Prechádzať zdrojové kódy

重要修订!!
positions_list 修订

Daniel 2 rokov pred
rodič
commit
1abf55725f
2 zmenil súbory, kde vykonal 173 pridanie a 110 odobranie
  1. 7 3
      QMT/real_time.py
  2. 166 107
      YH_backtrader.py

+ 7 - 3
QMT/real_time.py

@@ -84,14 +84,14 @@ def ma_judge(data, stock_list, results):
     print('RRRRRRR,', results)
 
 
-def sell_trader(data, positions):
+def sell_trader(data, positions_list):
     # for m in data:
     #     print(m, data[m]['lastPrice'])
     print('卖出函数:', dt.now())
     # positions = xt_trader.query_stock_positions(acc)
     # print('持仓总数:', len(positions))
     for stock in data:
-        if stock in positions:
+        if stock in positions_list:
             print('持仓', stock, data[stock])
             current_price = data[stock]['lastPrice']
             open_price = data[stock]['open']
@@ -200,9 +200,13 @@ def trader(data):
 
     # 先判断卖出条件
     positions = xt_trader.query_stock_positions(acc)
+    print(type(positions))
     print('持仓数量', len(positions))
     if len(positions) != 0:
-        sell_trader(data, positions)
+        positions_list = [positions[x].stock_code for x in range(0, len(positions))]
+        print(positions_list)
+
+        sell_trader(data, positions_list)
 
     # 买入条件
     buy_trader(data)

+ 166 - 107
YH_backtrader.py

@@ -5,6 +5,7 @@ import pandas as pd
 import pymysql
 import backtrader as bt
 import backtrader.indicators as btind
+import backtrader.analyzers as btanalyzers
 import datetime
 import math
 from datetime import datetime as dt
@@ -14,8 +15,10 @@ from numba import jit, cuda, njit
 
 
 # import multiprocessing
-# import matplotlib
-
+import matplotlib
+pd.set_option('display.max_columns', None) # 设置显示最大行
+# global result
+# result = pd.DataFrame(columns=['code', 'result', 'num', 'Volatility', 'rate'])
 class MyPandasData(PandasData):
     lines = ()
     params = ()
@@ -48,35 +51,7 @@ class TestStrategy(bt.Strategy):
     def log(self, txt, dt=None):
         ''' Logging function for this strategy'''
         dt = dt or self.datas[0].datetime.date(0)
-        # print('%s, %s' % (dt.isoformat(), txt))
-
-
-    def __init__(self):
-        print('__init__', dt.now())
-        print(f'{self.params.num}天波动率为{self.params.Volatility}%乖离率为{self.params.rate}', 'myPID is ', os.getpid())
-        # self.num = num
-        # self.Volatility = Volatility/100
-        # Keep a reference to the "close" line in the data[0] dataseries
-        self.dataclose = self.datas[0].close
-        self.dataopen = self.datas[0].open
-        self.high = self.datas[0].high
-        self.low = self.datas[0].low
-        self.volume = self.datas[0].volume
-        # self.change_pct = self.datas[0].change_pct
-        # self.net_amount_main = self.datas[0].net_amount_main
-        # self.net_pct_main = self.datas[0].net_pct_main
-        # self.net_amount_xl = self.datas[0].net_amount_xl
-        # self.net_pct_xl = self.datas[0].net_pct_xl
-        # self.net_amount_l = self.datas[0].net_amount_l
-        # self.net_pct_l = self.datas[0].net_pct_l
-        self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
-        self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
-        self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
-        self.yx = self.dataclose[0] > self.dataopen[0]
-        self.lowest = btind.Lowest(self.params.num)
-        self.highest = btind.Highest(self.params.num)
-        self.vola = self.params.Volatility / 100
-        self.rate = self.params.rate / 100
+        print('%s, %s' % (dt.isoformat(), txt))
 
     def notify_order(self, order):
         """
@@ -99,7 +74,7 @@ class TestStrategy(bt.Strategy):
         # 订单因为缺少资金之类的原因被拒绝执行
         elif order.status in [order.Canceled, order.Margin, order.Rejected]:
             pass
-            # self.log('Order Canceled/Margin/Rejected')
+            self.log('Order Canceled/Margin/Rejected')
 
         # 订单状态处理完成,设为空
         self.order = None
@@ -117,34 +92,83 @@ class TestStrategy(bt.Strategy):
         # 显示交易的毛利率和净利润
         # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
 
-    @njit
+    def __init__(self):
+        # print('__init__', dt.now())
+        # print(f'{self.params.num}天波动率为{self.params.Volatility}%乖离率为{self.params.rate}', 'myPID is ', os.getpid())
+        self.dataclose = self.datas[0].close
+        self.dataopen = self.datas[0].open
+        self.high = self.datas[0].high
+        self.low = self.datas[0].low
+        self.volume = self.datas[0].volume
+        # self.change_pct = self.datas[0].change_pct
+        # self.net_amount_main = self.datas[0].net_amount_main
+        # self.net_pct_main = self.datas[0].net_pct_main
+        # self.net_amount_xl = self.datas[0].net_amount_xl
+        # self.net_pct_xl = self.datas[0].net_pct_xl
+        # self.net_amount_l = self.datas[0].net_amount_l
+        # self.net_pct_l = self.datas[0].net_pct_l
+        self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
+        self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
+        self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
+        self.yx = self.dataclose > self.dataopen
+        self.lowest = min(self.dataclose.get(ago=-1, size=self.params.num))
+        self.highest = max(self.high.get(ago=-1, size=self.params.num))
+        self.vola = self.params.Volatility / 100
+        self.rate = self.params.rate / 100
+        # print('初始化完成', dt.now())
+
+    # @njit
     def next(self):
-        # print(self.num,self.Volatility)
-        # Simply log the closing price of the series from the reference
-        # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
-        # and (self.sma5[-1] < self.sma10[-1])
-        # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3)  \
-        # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
-        if len(self) > self.params.num:
-
-            # print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
-            if self.yx \
-                    and (((self.lowest[0] * (1 - self.vola)) < self.low[-2] < (self.lowest[0] * (1 + self.vola))) or (
-                    (self.lowest[0] * (1 - self.vola)) < self.low[-1] < (self.lowest[0] * (1 + self.vola)))) \
-                    and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
-                    and (not self.position) and (self.sma5[0] > self.sma10[0]):
-                # self.log('BUY CREATE, %.2f' % self.dataclose[0])
-                self.order = self.buy()
-            elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0] \
-                    or (self.dataclose[0] > (self.sma5[0] * (1 + self.rate))) or \
-                    (((self.highest[0] * (1 - self.vola)) < self.high[-2] < (self.highest[0] * (1 + self.vola))) or (
-                            (self.highest[0] * (1 - self.vola)) < self.high[-1] < (self.highest[0] * (1 + self.vola)))):
-                self.order = self.close()
-                # self.log('Close, %.2f' % self.dataclose[0])
+        '''
+                if self.yx and (self.dataclose[0] > self.dataclose[-1] > self.dataclose[-2])\
+                and self.sma5[0] > self.sma10[0] and self.sma5[-1] < self.sma10[-1]:
+            print('next', self.yx[0], (self.dataclose[0] > self.dataclose[-1] > self.dataclose[-2]),
+                  self.sma5[0] > self.sma10[0], self.sma5[-1] < self.sma10[-1])
+        :return:
+        '''
+
+        if self.yx and ((self.lowest * (1 - self.vola)) < self.low[-2] < (self.lowest * (1 + self.vola)))\
+                and self.dataclose[0] > self.dataclose[-1] > self.dataclose[-2] and self.dataclose[0] > self.sma5[0]:
+            # print(f'buy, {self.lowest},{self.vola},{self.low[-2]}, {self.rate}')
+            # self.log('BUY CREATE, %.2f' % self.dataclose[0])
+            self.order = self.buy()
+        elif self.dataclose < self.sma5[0]:
+            self.order = self.close()
+            # self.log('close<ma5 Close, %.2f' % self.dataclose[0])
+        elif self.sma5[0] < self.sma10[0]:
+            self.order = self.close()
+            # self.log('ma5<ma10 Close, %.2f' % self.dataclose[0])
+        elif self.dataclose[0] > self.sma5[0]*(1+self.rate):
+            self.order = self.close()
+            # self.log('close>rate Close, %.2f' % self.dataclose[0])
+        '''
+                if self.yx \
+                and (((self.lowest[0] * (1 - self.vola)) < self.low[-2] < (self.lowest[0] * (1 + self.vola))) or (
+                (self.lowest[0] * (1 - self.vola)) < self.low[-1] < (self.lowest[0] * (1 + self.vola)))) \
+                and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
+                and (not self.position) and (self.sma5[0] > self.sma10[0]):
+            # self.log('BUY CREATE, %.2f' % self.dataclose[0])
+            self.order = self.buy()
+        elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0] \
+                or (self.dataclose[0] > (self.sma5[0] * (1 + self.rate))) or \
+                (((self.highest[0] * (1 - self.vola)) < self.high[-2] < (self.highest[0] * (1 + self.vola))) or (
+                        (self.highest[0] * (1 - self.vola)) < self.high[-1] < (self.highest[0] * (1 + self.vola)))):
+            self.order = self.close()
+            # self.log('Close, %.2f' % self.dataclose[0])
+        '''
+
 
     def stop(self):
         # pass
-        self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
+        global result
+        self.log(u'(MA趋势交易效果) Ending Value %.2f  num %d Vol %d rate %d' % (self.broker.getvalue(),
+                                                                                       self.params.num,
+                                                                                       self.params.Volatility,
+                                                                                       self.params.rate))
+        # self.log(f'time:{dt.now()}')
+        # temp = pd.DataFrame(columns=['code', 'result', 'num', 'Volatility', 'rate'],
+        #                     data=[self.getdatanames(), self.broker.getvalue(), self.params.num, self.params.rate])
+        # result = pd.concat([result,temp],axis=0)
 
 
 def err_call_back(err):
@@ -160,24 +184,46 @@ def to_df(lt):
     print(df)
 
 
-def backtrader(list_date, table_list, result, result_change, result_change_fall,  err_list):
+# 打印结果
+def get_my_analyzer(result):
+    analyzer = {}
+    # 返回参数
+    analyzer['num'] = result.params.num
+    analyzer['Volatility'] = result.params.Volatility
+    analyzer['rate'] = result.params.rate
+    # 提取年化收益
+    analyzer['年化收益率'] = result.analyzers._Returns.get_analysis()['rnorm']
+    analyzer['年化收益率(%)'] = result.analyzers._Returns.get_analysis()['rnorm100']
+    # 提取最大回撤(习惯用负的做大回撤,所以加了负号)
+    analyzer['最大回撤(%)'] = result.analyzers._DrawDown.get_analysis()['max']['drawdown'] * (-1)
+    # 提取夏普比率
+    analyzer['年化夏普比率'] = result.analyzers._SharpeRatio_A.get_analysis()['sharperatio']
+
+    return analyzer
+
+def backtrader(table_list, result_change, result_change_fall,  err_list):
     sttime = dt.now()
-    engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks?charset=utf8')
+    engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_front?charset=utf8')
 
-    cerebro = bt.Cerebro()
-    # cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
-    cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
+    cerebro = bt.Cerebro(stdstats=False)
+    # cerebro.addobserver(bt.observers.Broker)
+    # cerebro.addobserver(bt.observers.Trades)
+    # cerebro.addobserver(bt.observers.BuySell)
+    # cerebro.addobserver(bt.observers.DrawDown)
+    # cerebro.addobserver(bt.observers.TimeReturn)
+    # cerebro.addstrategy(TestStrategy)
+    cerebro.addsizer(bt.sizers.FixedSize, stake=1000)
 
     cerebro.broker.setcash(100000.0)
     cerebro.broker.setcommission(0.005)
 
     for stock in table_list:
-        # print(stock)
+        print(stock)
         stk_df = pd.read_sql_table(stock, engine)
         stk_df.time = pd.to_datetime(stk_df.time)
         data = MyPandasData(dataname=stk_df,
-                            fromdate=datetime.datetime(2010, 1, 1),
-                            todate=datetime.datetime(2022, 12, 31),
+                            fromdate=datetime.datetime(2022, 1, 1),
+                            todate=datetime.datetime(2023, 2, 1),
                             datetime='time',
                             open='open',
                             close='close',
@@ -199,20 +245,66 @@ def backtrader(list_date, table_list, result, result_change, result_change_fall,
 
         cerebro.adddata(data, name=stock)
 
-    print('取值完成', dt.now())
-    cerebro.optstrategy(TestStrategy, num=range(60, 80, 20), Volatility=range(3, 7), rate=range(5, 12))
+    cerebro.optstrategy(TestStrategy, num=range(40, 130, 10), Volatility=range(5, 8), rate=range(5, 8))
     print('最优参定义', dt.now())
 
-    cerebro.addanalyzer(bt.analyzers.PyFolio)
+    # 添加分析指标
+    # 返回年初至年末的年度收益率
+    # cerebro.addanalyzer(bt.analyzers.AnnualReturn, _name='_AnnualReturn')
+    # 计算最大回撤相关指标
+    cerebro.addanalyzer(bt.analyzers.DrawDown, _name='_DrawDown')
+    # 计算年化收益:日度收益
+    cerebro.addanalyzer(bt.analyzers.Returns, _name='_Returns', tann=252)
+    # 计算年化夏普比率:日度收益
+    cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='_SharpeRatio', timeframe=bt.TimeFrame.Days, annualize=True,
+                        riskfreerate=0)
+    # 计算夏普比率
+    cerebro.addanalyzer(bt.analyzers.SharpeRatio_A, _name='_SharpeRatio_A')
+    # 返回收益率时序
+    cerebro.addanalyzer(bt.analyzers.TimeReturn, _name='_TimeReturn')
     # 策略执行前的资金
     # print('启动资金: %.2f' % cerebro.broker.getvalue())
+
+    cerebro.addsizer(bt.sizers.PercentSizer, percents=10)
+    cerebro.addanalyzer(btanalyzers.SharpeRatio, _name="sharpe")
+    cerebro.addanalyzer(btanalyzers.DrawDown, _name="drawdown")
+    cerebro.addanalyzer(btanalyzers.Returns, _name="returns")
+    cerebro.addanalyzer(btanalyzers.TradeAnalyzer, _name='TradeAnalyzer')
+
+
     try:
         # 策略执行
         print('开始执行', dt.now())
-        cerebro.run(maxcpus=None)
+        results = cerebro.run(maxcpus=None)
+        print('回测结束', dt.now())
     except IndexError:
         err_list.append(stock)
     else:
+
+        par_list = [[x[0].params.num,
+                     x[0].params.Volatility,
+                     x[0].params.rate,
+                     x[0].analyzers.returns.get_analysis()['rnorm100'],
+                     x[0].analyzers.drawdown.get_analysis()['max']['drawdown'],
+                     x[0].analyzers.sharpe.get_analysis()['sharperatio'],
+                     x[0].analyzers.TradeAnalyzer.get_analysis().won.total,
+                     ] for x in results]
+
+        par_df = pd.DataFrame(par_list, columns=['num', 'Volatility', 'rate', 'return', 'drawdown', 'sharpe','TradeAnalyzer'])
+        print(par_df)
+        # par_df.to_csv('result.csv')
+
+
+
+
+
+
+        ret = []
+        for i in results:
+            ret.append(get_my_analyzer(i[0]))
+
+        pd.DataFrame(ret)
+        '''
         if cerebro.broker.getvalue() > 100000.0:
             result_change.append((cerebro.broker.getvalue() / 10000 - 1))
             result.append(stock)
@@ -222,7 +314,7 @@ def backtrader(list_date, table_list, result, result_change, result_change_fall,
             result_change_fall.append((1 - cerebro.broker.getvalue() / 10000))
             # print('aaaaaaaaaaa')
             # print(result_change_fall)
-
+        '''
     # if len(result) * len(result_change) * len(result_change_fall) != 0:
     #     print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
     #     print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
@@ -249,11 +341,6 @@ def backtrader(list_date, table_list, result, result_change, result_change_fall,
 if __name__ == '__main__':
     starttime = dt.now()
     print(starttime)
-    # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8', poolclass=NullPool)
-
-    # stocks = pd.read_sql_query(
-    #                     'select value from MA5_1d', engine_hlfx)
-
     fre = '1d'
     db = pymysql.connect(host='localhost',
                          user='root',
@@ -264,43 +351,15 @@ if __name__ == '__main__':
     cursor.execute("show tables like '%%%s%%' " % fre)
     table_list = [tuple[0] for tuple in cursor.fetchall()]
     # print(table_list)
-    table_list = table_list[0:100]
-
-    list_date = mp.Manager().list()
-    thread_list = []
-    pool = mp.Pool(processes=mp.cpu_count())
-    # for num in range(60, 100, 20):
-    #     for Volatility in range(3, 7, 1):
-    #         for rate in range(7, 9, 1):
-    step = math.ceil(len(table_list) / mp.cpu_count())
-    result = []
+    table_list = table_list[0:2]
+
+
     result_change = []
     result_change_fall = []
     err_list = []
-    # print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
-    backtrader(list_date, table_list, result, result_change, result_change_fall,
-                           err_list)
-                # for i in range(0, len(table_list), step):
     stattime = dt.now()
-    print(stattime)
-                # thd = threading.local()
-                # print(i)
-                # p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
-                #                                         num, Volatility, rate, err_list))
-                # thread_list.append(p)
-                # pool.apply_async(func=backtrader,
-                #                  args=(list_date, table_list, result, result_change, result_change_fall,
-                #                        num, Volatility, rate, err_list,), error_callback=err_call_back)
-                # p.start()
-                # p.join()
-                # print(thread_list)
-    # for thread in thread_list:
-    #     thread.start()
-    # for thread in thread_list:
-    #     thread.join()
-    pool.close()
-    pool.join()
-
+    # print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
+    backtrader(table_list,  result_change, result_change_fall, err_list)
     edtime = dt.now()
     print('总耗时:', edtime - starttime)
     # df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)