|
@@ -1,12 +1,9 @@
|
|
import threading
|
|
import threading
|
|
-
|
|
|
|
import pymysql
|
|
import pymysql
|
|
import pandas as pd
|
|
import pandas as pd
|
|
-from threading import Thread, current_thread, local
|
|
|
|
from sqlalchemy import create_engine
|
|
from sqlalchemy import create_engine
|
|
-from datetime import datetime as dt
|
|
|
|
-starttime = dt.now()
|
|
|
|
-time = dt.strptime(dt.strftime(dt.now(),'%H:%M:%S'),'%H:%M:%S')
|
|
|
|
|
|
+
|
|
|
|
+
|
|
# 数据库引擎
|
|
# 数据库引擎
|
|
# engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
|
|
# engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
|
|
|
|
|
|
@@ -15,25 +12,29 @@ db = pymysql.connect(host='localhost',
|
|
user='root',
|
|
user='root',
|
|
port=3307,
|
|
port=3307,
|
|
password='r6kEwqWU9!v3',
|
|
password='r6kEwqWU9!v3',
|
|
- database='qbh_hlfx')
|
|
|
|
|
|
+ database='qbh_hlfx_backup')
|
|
|
|
|
|
fre = '1d'
|
|
fre = '1d'
|
|
|
|
|
|
cursor = db.cursor()
|
|
cursor = db.cursor()
|
|
-cursor.execute("select table_name from information_schema.tables where table_schema='qbh_hlfx' and table_name like {}".format('\'%{}\''.format(fre)))
|
|
|
|
|
|
+# cursor.execute("select table_name from information_schema.tables where table_schema='qbh_hlfx_backup' and table_name like {}".format('\'%{}\''.format(fre)))
|
|
|
|
+cursor.execute('show tables like {}'.format('\'%{}\''.format(fre)))
|
|
table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
|
|
|
# print(table_list)
|
|
# print(table_list)
|
|
stk = threading.local()
|
|
stk = threading.local()
|
|
engine = locals()
|
|
engine = locals()
|
|
|
|
+engine_tosql = locals()
|
|
|
|
+
|
|
|
|
+
|
|
# 主程序
|
|
# 主程序
|
|
# 找顶底(hdx lfx)分型
|
|
# 找顶底(hdx lfx)分型
|
|
-def hlfx(table_list,engine):
|
|
|
|
|
|
+def hlfx(table_list, engine, engine_tosql):
|
|
for table in table_list:
|
|
for table in table_list:
|
|
# stk.fxdf = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
|
|
# stk.fxdf = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
|
|
stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from %s' % table, engine)
|
|
stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from %s' % table, engine)
|
|
for i in stk.df_day.index:
|
|
for i in stk.df_day.index:
|
|
- m = i-1
|
|
|
|
|
|
+ m = i - 1
|
|
if i <= 3:
|
|
if i <= 3:
|
|
# stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
# stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
stk.df_day.loc[i, 'HL'] = '-'
|
|
stk.df_day.loc[i, 'HL'] = '-'
|
|
@@ -41,38 +42,62 @@ def hlfx(table_list,engine):
|
|
elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])):
|
|
elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])):
|
|
# if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
# if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
# stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
# stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'L*'
|
|
while m:
|
|
while m:
|
|
- if (stk.df_day.loc[m, 'HL'] == 'H' and (i-m) > 3) \
|
|
|
|
- or (stk.df_day.loc[m, 'HL'] == 'L' and stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']):
|
|
|
|
- # 前一个为顶,且中间存在不包含 or 更低的底
|
|
|
|
- stk.df_day.loc[i, 'HL'] = 'L'
|
|
|
|
|
|
+ if m == 1:
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'l'
|
|
|
|
+ elif stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h':
|
|
|
|
+ if(i-m) > 3:
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'L'
|
|
break
|
|
break
|
|
|
|
+ elif (stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l'):
|
|
|
|
+ if stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']:
|
|
|
|
+ # 前一个为顶,且中间存在不包含 or 更低的底
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'L'
|
|
|
|
+ break
|
|
|
|
+ else:
|
|
|
|
+ break
|
|
m = m-1
|
|
m = m-1
|
|
|
|
+
|
|
# 顶
|
|
# 顶
|
|
elif ((stk.df_day.loc[i,'high']<stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']<stk.df_day.loc[i-1,'high'])):
|
|
elif ((stk.df_day.loc[i,'high']<stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']<stk.df_day.loc[i-1,'high'])):
|
|
# if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
# if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
# stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
# stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'H*'
|
|
while m:
|
|
while m:
|
|
- if (stk.df_day.loc[m, 'HL'] == 'L' and (i-m) > 3) \
|
|
|
|
- or (stk.df_day.loc[m, 'HL'] == 'H' and stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']):
|
|
|
|
- # 前一个为底,且中间存在不包含 or 更高的顶
|
|
|
|
- stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
|
|
|
+ if m == 1:
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'h'
|
|
|
|
+ elif stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l':
|
|
|
|
+ if i-m > 3:
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
|
+ stk.df_day.loc[i, 9] = stk.df_day.loc[i, 'close'] - stk.df_day.loc[m, 'close']
|
|
|
|
+ break
|
|
|
|
+ elif (stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h'):
|
|
|
|
+ if stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']:
|
|
|
|
+ # 前一个为底,且中间存在不包含 or 更高的顶
|
|
|
|
+ stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
|
+ break
|
|
break
|
|
break
|
|
m = m-1
|
|
m = m-1
|
|
else:
|
|
else:
|
|
stk.df_day.loc[i, 'HL'] = '-'
|
|
stk.df_day.loc[i, 'HL'] = '-'
|
|
# stk.df_day.to_sql('%s' % table, con=engine, index=True, if_exists='replace', chunksize=20000)
|
|
# stk.df_day.to_sql('%s' % table, con=engine, index=True, if_exists='replace', chunksize=20000)
|
|
- print(table, '\n', stk.df_day)
|
|
|
|
- stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx/this%s.csv' % table)
|
|
|
|
|
|
+ # print(table, '\n', stk.df_day)
|
|
|
|
+ stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx2/hlfx%s.csv' % table)
|
|
|
|
+ stk.df_day.to_sql('%s' % table, con=engine_tosql, index=True, if_exists='replace')
|
|
|
|
+ with engine_tosql.connect() as con_backup:
|
|
|
|
+ con_backup.execute('ALTER TABLE %s ADD PRIMARY KEY (`date`);' % table)
|
|
|
|
|
|
# table_list = ['stk002237_1d','stk000002_1d']
|
|
# table_list = ['stk002237_1d','stk000002_1d']
|
|
-# hlfx(table_list)
|
|
|
|
|
|
+# engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')
|
|
|
|
+# hlfx(table_list, engine)
|
|
|
|
+
|
|
step = 50
|
|
step = 50
|
|
|
|
+thread_list = []
|
|
for i in range(0, len(table_list), step):
|
|
for i in range(0, len(table_list), step):
|
|
|
|
+ engine_tosql[i] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_backup?charset=utf8')
|
|
engine[i] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')
|
|
engine[i] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')
|
|
- threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[i])).start()
|
|
|
|
|
|
+ threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[i], engine_tosql[i])).start()
|
|
|
|
|
|
-endtime=dt.now()
|
|
|
|
-print((endtime - starttime).seconds)
|
|
|
|
|
|
|
|
|
|
|