|
@@ -29,49 +29,57 @@ import threading
|
|
|
engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
|
|
|
|
|
|
stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
|
|
|
-# stocks =stocks[0:40]
|
|
|
+stocks =stocks[0:40]
|
|
|
|
|
|
thd = threading.local()
|
|
|
|
|
|
|
|
|
-def qbh(stocks , engine):
|
|
|
+def qbh(stocks, engine, engine_backup):
|
|
|
for stock in stocks:
|
|
|
- print(stock)
|
|
|
- thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
|
|
|
- # print(new_df.head())
|
|
|
- thd.df_day = stk['stk' + stock[:6]]
|
|
|
- for i in thd.df_day.index:
|
|
|
- if i == 0 or i == 1:
|
|
|
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
|
|
|
- # 不包含
|
|
|
- elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
|
|
|
- and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
|
|
|
- or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
|
|
|
- and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
|
|
|
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
|
|
|
- # 包含
|
|
|
- else:
|
|
|
- # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
|
|
|
- if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]: #左高,下降
|
|
|
- thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
|
|
|
- thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
|
|
|
- else:
|
|
|
- # 右高,上升
|
|
|
- thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
|
|
|
- thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
|
|
|
- thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine, index=True, if_exists='replace')
|
|
|
- with engine.connect() as con:
|
|
|
- con.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);'% (stock[:6], u))
|
|
|
- print(stock)
|
|
|
- print("**************")
|
|
|
-
|
|
|
- # new_df.to_csv('new_df.csv')
|
|
|
-
|
|
|
- #return new_df
|
|
|
+ print(engine)
|
|
|
+ print(engine_backup)
|
|
|
+ # thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
|
|
|
+ # # print(new_df.head())
|
|
|
+ # thd.df_day = stk['stk' + stock[:6]]
|
|
|
+ # for i in thd.df_day.index:
|
|
|
+ # if i == 0 or i == 1:
|
|
|
+ # thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
|
|
|
+ # # 不包含
|
|
|
+ # elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
|
|
|
+ # and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
|
|
|
+ # or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
|
|
|
+ # and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
|
|
|
+ # thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
|
|
|
+ # # 包含
|
|
|
+ # else:
|
|
|
+ # # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
|
|
|
+ # # 左高,下降
|
|
|
+ # if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
|
|
|
+ # thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
|
|
|
+ # thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
|
|
|
+ # else:
|
|
|
+ # # 右高,上升
|
|
|
+ # thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
|
|
|
+ # thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
|
|
|
+ # thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine, index=True, if_exists='replace')
|
|
|
+ # with engine.connect() as con:
|
|
|
+ # con.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
|
|
|
+ # thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
|
|
|
+ # with engine_backup.connect() as con_backup:
|
|
|
+ # con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
|
|
|
+ # thd.new_df.to_csv(
|
|
|
+ # '/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220211qbh/qbh%s.csv' % stock[:6])
|
|
|
+ # print(stock)
|
|
|
+ # print("**************")
|
|
|
+ #
|
|
|
+ # # new_df.to_csv('new_df.csv')
|
|
|
+ #
|
|
|
+ # #return new_df
|
|
|
|
|
|
|
|
|
stk = locals()
|
|
|
-engine = locals()
|
|
|
+engine = []
|
|
|
+engine_backup = []
|
|
|
|
|
|
u = '1d'
|
|
|
# 获取数据存入DataFrame
|
|
@@ -89,7 +97,8 @@ print("#########################################################################
|
|
|
|
|
|
# 开始去包含
|
|
|
# qbh(stocks)
|
|
|
-
|
|
|
-for m in range(0, len(stocks), 50):
|
|
|
- engine[m] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8', pool_recycle=3600)
|
|
|
- threading.Thread(target=qbh, args=(stocks[m:m + 50], engine[m])).start()
|
|
|
+step = 100
|
|
|
+for m in range(0, len(stocks), step):
|
|
|
+ engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8', pool_recycle= 3600))
|
|
|
+ engine_backup.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8', pool_recycle= 3600))
|
|
|
+ threading.Thread(target=qbh, args=(stocks[m:m + step], engine[m], engine_backup[m])).start()
|