|  | @@ -0,0 +1,318 @@
 | 
	
		
			
				|  |  | +import os
 | 
	
		
			
				|  |  | +import traceback
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import numpy as np
 | 
	
		
			
				|  |  | +from sqlalchemy import create_engine
 | 
	
		
			
				|  |  | +import pandas as pd
 | 
	
		
			
				|  |  | +import pymysql
 | 
	
		
			
				|  |  | +import backtrader as bt
 | 
	
		
			
				|  |  | +import backtrader.indicators as btind
 | 
	
		
			
				|  |  | +import datetime
 | 
	
		
			
				|  |  | +import math
 | 
	
		
			
				|  |  | +from datetime import datetime as dt
 | 
	
		
			
				|  |  | +import multiprocessing as mp
 | 
	
		
			
				|  |  | +from backtrader.feeds import PandasData
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# import multiprocessing
 | 
	
		
			
				|  |  | +# import matplotlib
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +class MyPandasData(PandasData):
 | 
	
		
			
				|  |  | +    lines = ('hl',)
 | 
	
		
			
				|  |  | +    params = (('hl', 7),)
 | 
	
		
			
				|  |  | +    '''
 | 
	
		
			
				|  |  | +    lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
 | 
	
		
			
				|  |  | +             , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
 | 
	
		
			
				|  |  | +    params = (('change_pct', 7),
 | 
	
		
			
				|  |  | +              ('net_amount_main', 8),
 | 
	
		
			
				|  |  | +              ('net_pct_main', 9),
 | 
	
		
			
				|  |  | +              ('net_amount_xl', 10),
 | 
	
		
			
				|  |  | +              ('net_pct_xl', 11),
 | 
	
		
			
				|  |  | +              ('net_amount_l', 12),
 | 
	
		
			
				|  |  | +              ('net_pct_l', 13),
 | 
	
		
			
				|  |  | +              ('net_amount_m', 14),
 | 
	
		
			
				|  |  | +              ('net_pct_m', 15),
 | 
	
		
			
				|  |  | +              ('net_amount_s', 16),
 | 
	
		
			
				|  |  | +              ('net_pct_s', 17),
 | 
	
		
			
				|  |  | +              )
 | 
	
		
			
				|  |  | +    '''
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +class TestStrategy(bt.Strategy):
 | 
	
		
			
				|  |  | +    params = (
 | 
	
		
			
				|  |  | +        ("num", 3),
 | 
	
		
			
				|  |  | +        ('Volatility', 0),
 | 
	
		
			
				|  |  | +        ('rate', 5),  # 注意要有逗号!!
 | 
	
		
			
				|  |  | +    )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def log(self, txt, dt=None):
 | 
	
		
			
				|  |  | +        ''' Logging function for this strategy'''
 | 
	
		
			
				|  |  | +        dt = dt or self.datas[0].datetime.date(0)
 | 
	
		
			
				|  |  | +        # print('%s, %s' % (dt.isoformat(), txt))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def __init__(self):
 | 
	
		
			
				|  |  | +        # self.num = num
 | 
	
		
			
				|  |  | +        # self.Volatility = Volatility/100
 | 
	
		
			
				|  |  | +        # Keep a reference to the "close" line in the data[0] dataseries
 | 
	
		
			
				|  |  | +        self.dataclose = self.datas[0].close
 | 
	
		
			
				|  |  | +        self.dataopen = self.datas[0].open
 | 
	
		
			
				|  |  | +        self.high = self.datas[0].high
 | 
	
		
			
				|  |  | +        self.low = self.datas[0].low
 | 
	
		
			
				|  |  | +        self.volume = self.datas[0].volume
 | 
	
		
			
				|  |  | +        self.hl = self.datas[0].hl
 | 
	
		
			
				|  |  | +        # self.change_pct = self.datas[0].change_pct
 | 
	
		
			
				|  |  | +        # self.net_amount_main = self.datas[0].net_amount_main
 | 
	
		
			
				|  |  | +        # self.net_pct_main = self.datas[0].net_pct_main
 | 
	
		
			
				|  |  | +        # self.net_amount_xl = self.datas[0].net_amount_xl
 | 
	
		
			
				|  |  | +        # self.net_pct_xl = self.datas[0].net_pct_xl
 | 
	
		
			
				|  |  | +        # self.net_amount_l = self.datas[0].net_amount_l
 | 
	
		
			
				|  |  | +        # self.net_pct_l = self.datas[0].net_pct_l
 | 
	
		
			
				|  |  | +        self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
 | 
	
		
			
				|  |  | +        self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
 | 
	
		
			
				|  |  | +        self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def notify_order(self, order):
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        订单状态处理
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Arguments:
 | 
	
		
			
				|  |  | +            order {object} -- 订单状态
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        if order.status in [order.Submitted, order.Accepted]:
 | 
	
		
			
				|  |  | +            # 如订单已被处理,则不用做任何事情
 | 
	
		
			
				|  |  | +            return
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # 检查订单是否完成
 | 
	
		
			
				|  |  | +        if order.status in [order.Completed]:
 | 
	
		
			
				|  |  | +            if order.isbuy():
 | 
	
		
			
				|  |  | +                self.buyprice = order.executed.price
 | 
	
		
			
				|  |  | +                self.buycomm = order.executed.comm
 | 
	
		
			
				|  |  | +            self.bar_executed = len(self)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # 订单因为缺少资金之类的原因被拒绝执行
 | 
	
		
			
				|  |  | +        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
 | 
	
		
			
				|  |  | +            pass
 | 
	
		
			
				|  |  | +            # self.log('Order Canceled/Margin/Rejected')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # 订单状态处理完成,设为空
 | 
	
		
			
				|  |  | +        self.order = None
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def notify_trade(self, trade):
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        交易成果
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Arguments:
 | 
	
		
			
				|  |  | +            trade {object} -- 交易状态
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        if not trade.isclosed:
 | 
	
		
			
				|  |  | +            return
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # 显示交易的毛利率和净利润
 | 
	
		
			
				|  |  | +        # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def next(self):
 | 
	
		
			
				|  |  | +        # print(self.num,self.Volatility)
 | 
	
		
			
				|  |  | +        # Simply log the closing price of the series from the reference
 | 
	
		
			
				|  |  | +        # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
 | 
	
		
			
				|  |  | +        # and (self.sma5[-1] < self.sma10[-1])
 | 
	
		
			
				|  |  | +        # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3)  \
 | 
	
		
			
				|  |  | +        # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if len(self) > self.params.num:
 | 
	
		
			
				|  |  | +            vola = self.params.Volatility / 100
 | 
	
		
			
				|  |  | +            rate = self.params.rate / 100
 | 
	
		
			
				|  |  | +            lowest = np.min(self.low.get(size=self.params.num))
 | 
	
		
			
				|  |  | +            highest = np.max(self.high.get(size=self.params.num))
 | 
	
		
			
				|  |  | +            if self.hl[-2] == 2 and self.dataclose[0] > self.sma5[0] > self.sma5[-1] \
 | 
	
		
			
				|  |  | +                    and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
 | 
	
		
			
				|  |  | +                    (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))):
 | 
	
		
			
				|  |  | +                self.order = self.buy()
 | 
	
		
			
				|  |  | +            elif self.hl[0] == 5 and ((highest * (1 - vola)) < self.high[-2] < (highest * (1 + vola))):
 | 
	
		
			
				|  |  | +                self.order = self.close()
 | 
	
		
			
				|  |  | +        '''
 | 
	
		
			
				|  |  | +                if len(self) > self.params.num:
 | 
	
		
			
				|  |  | +            lowest = np.min(self.low.get(size=self.params.num))
 | 
	
		
			
				|  |  | +            highest = np.max(self.high.get(size=self.params.num))
 | 
	
		
			
				|  |  | +            vola = self.params.Volatility / 100
 | 
	
		
			
				|  |  | +            rate = self.params.rate / 100
 | 
	
		
			
				|  |  | +            # print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
 | 
	
		
			
				|  |  | +            if (self.dataclose[0] > self.dataopen[0]) \
 | 
	
		
			
				|  |  | +                    and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
 | 
	
		
			
				|  |  | +                    (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))) \
 | 
	
		
			
				|  |  | +                    and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
 | 
	
		
			
				|  |  | +                    and (not self.position) and (self.sma5[0] > self.sma10[0]):
 | 
	
		
			
				|  |  | +                # self.log('BUY CREATE, %.2f' % self.dataclose[0])
 | 
	
		
			
				|  |  | +                self.order = self.buy()
 | 
	
		
			
				|  |  | +            elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0] \
 | 
	
		
			
				|  |  | +                    or (self.dataclose[0] > (self.sma5[0] * (1 + rate))) or \
 | 
	
		
			
				|  |  | +                    (((highest * (1 - vola)) < self.high[-2] < (highest * (1 + vola))) or (
 | 
	
		
			
				|  |  | +                            (highest * (1 - vola)) < self.high[-1] < (highest * (1 + vola)))):
 | 
	
		
			
				|  |  | +                self.order = self.close()
 | 
	
		
			
				|  |  | +                # self.log('Close, %.2f' % self.dataclose[0])
 | 
	
		
			
				|  |  | +        '''
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def stop(self):
 | 
	
		
			
				|  |  | +        # pass
 | 
	
		
			
				|  |  | +        self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def err_call_back(err):
 | 
	
		
			
				|  |  | +    print(f'出错啦~ error:{str(err)}')
 | 
	
		
			
				|  |  | +    traceback.format_exc(err)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def to_df(lt):
 | 
	
		
			
				|  |  | +    df = pd.DataFrame(list(lt), columns=['周期', '波动率', '乖离率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利',
 | 
	
		
			
				|  |  | +                               '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损'])
 | 
	
		
			
				|  |  | +    df.sort_values(by=['周期', '波动率', '乖离率'], ascending=True, inplace=True)
 | 
	
		
			
				|  |  | +    df = df.reset_index(drop=True)
 | 
	
		
			
				|  |  | +    # df.to_csv(f"D:\Daniel\策略\策略穷举{dt.now().strftime('%Y%m%d')}.csv", index=True, encoding='utf-8', mode='w')
 | 
	
		
			
				|  |  | +    df.to_csv(f"/Users/daniel/Documents/策略/策略穷举{dt.now().strftime('%Y%m%d')}.csv", index=True, encoding='utf-8', mode='w')
 | 
	
		
			
				|  |  | +    print(df)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def backtrader(list_date, table_list, result, result_change, result_change_fall, num, Volatility, rate, err_list):
 | 
	
		
			
				|  |  | +    print(f'{num}天波动率为{Volatility}%乖离率为{rate}', 'myPID is ', os.getpid())
 | 
	
		
			
				|  |  | +    sttime = dt.now()
 | 
	
		
			
				|  |  | +    engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
 | 
	
		
			
				|  |  | +    for stock in table_list:
 | 
	
		
			
				|  |  | +        # print(stock)
 | 
	
		
			
				|  |  | +        stk_df = pd.read_sql_table(stock, engine)
 | 
	
		
			
				|  |  | +        stk_df.time = pd.to_datetime(stk_df.time)
 | 
	
		
			
				|  |  | +        stk_df['HL'] = stk_df['HL'].map({'L': 1,
 | 
	
		
			
				|  |  | +                                         'LL': 2,
 | 
	
		
			
				|  |  | +                                         'L*': 3,
 | 
	
		
			
				|  |  | +                                         'H': 4,
 | 
	
		
			
				|  |  | +                                         'HH': 5,
 | 
	
		
			
				|  |  | +                                         'H*': 6,
 | 
	
		
			
				|  |  | +                                         '-': 7})
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if len(stk_df) > 60:
 | 
	
		
			
				|  |  | +            cerebro = bt.Cerebro()
 | 
	
		
			
				|  |  | +            cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
 | 
	
		
			
				|  |  | +            cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
 | 
	
		
			
				|  |  | +            data = MyPandasData(dataname=stk_df,
 | 
	
		
			
				|  |  | +                                fromdate=datetime.datetime(2017, 1, 1),
 | 
	
		
			
				|  |  | +                                todate=datetime.datetime(2022, 10, 30),
 | 
	
		
			
				|  |  | +                                datetime='time',
 | 
	
		
			
				|  |  | +                                open='open_back',
 | 
	
		
			
				|  |  | +                                close='close_back',
 | 
	
		
			
				|  |  | +                                high='high_back',
 | 
	
		
			
				|  |  | +                                low='low_back',
 | 
	
		
			
				|  |  | +                                volume='volume_back',
 | 
	
		
			
				|  |  | +                                hl='HL'
 | 
	
		
			
				|  |  | +                                # change_pct='change_pct',
 | 
	
		
			
				|  |  | +                                # net_amount_main='net_amount_main',
 | 
	
		
			
				|  |  | +                                # net_pct_main='net_pct_main',
 | 
	
		
			
				|  |  | +                                # net_amount_xl='net_amount_xl',
 | 
	
		
			
				|  |  | +                                # net_pct_xl='net_pct_xl',
 | 
	
		
			
				|  |  | +                                # net_amount_l='net_amount_l',
 | 
	
		
			
				|  |  | +                                # net_pct_l='net_pct_l',
 | 
	
		
			
				|  |  | +                                # net_amount_m='net_amount_m',
 | 
	
		
			
				|  |  | +                                # net_pct_m='net_pct_m',
 | 
	
		
			
				|  |  | +                                # net_amount_s='net_amount_s',
 | 
	
		
			
				|  |  | +                                # net_pct_s='net_pct_s',
 | 
	
		
			
				|  |  | +                                )
 | 
	
		
			
				|  |  | +            # print('取值完成')
 | 
	
		
			
				|  |  | +            cerebro.adddata(data, name=stock)
 | 
	
		
			
				|  |  | +            cerebro.broker.setcash(100000.0)
 | 
	
		
			
				|  |  | +            cerebro.broker.setcommission(0.005)
 | 
	
		
			
				|  |  | +            cerebro.addanalyzer(bt.analyzers.PyFolio)
 | 
	
		
			
				|  |  | +            # 策略执行前的资金
 | 
	
		
			
				|  |  | +            # print('启动资金: %.2f' % cerebro.broker.getvalue())
 | 
	
		
			
				|  |  | +            try:
 | 
	
		
			
				|  |  | +                # 策略执行
 | 
	
		
			
				|  |  | +                cerebro.run()
 | 
	
		
			
				|  |  | +            except IndexError:
 | 
	
		
			
				|  |  | +                err_list.append(stock)
 | 
	
		
			
				|  |  | +            else:
 | 
	
		
			
				|  |  | +                if cerebro.broker.getvalue() > 100000.0:
 | 
	
		
			
				|  |  | +                    result_change.append((cerebro.broker.getvalue() / 10000 - 1))
 | 
	
		
			
				|  |  | +                    result.append(stock)
 | 
	
		
			
				|  |  | +                    # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
 | 
	
		
			
				|  |  | +                    # print(result)
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    result_change_fall.append((1 - cerebro.broker.getvalue() / 10000))
 | 
	
		
			
				|  |  | +                    # print('aaaaaaaaaaa')
 | 
	
		
			
				|  |  | +                    # print(result_change_fall)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if len(result) * len(result_change) * len(result_change_fall) != 0:
 | 
	
		
			
				|  |  | +        print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
 | 
	
		
			
				|  |  | +        print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
 | 
	
		
			
				|  |  | +        print(
 | 
	
		
			
				|  |  | +            f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
 | 
	
		
			
				|  |  | +        print(
 | 
	
		
			
				|  |  | +            f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
 | 
	
		
			
				|  |  | +                          np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
 | 
	
		
			
				|  |  | +                          np.nansum(result_change_fall), np.nanmean(result_change_fall),
 | 
	
		
			
				|  |  | +                          np.nanmin(result_change_fall), np.nanmax(result_change_fall)])
 | 
	
		
			
				|  |  | +        to_df(list_date)
 | 
	
		
			
				|  |  | +        endtime = dt.now()
 | 
	
		
			
				|  |  | +        print(f'{num}天波动率为{Volatility}%乖离率为{rate},myPID is {os.getpid()}.本轮耗时为{endtime - sttime}')
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        print(result, result_change, result_change_fall, num, Volatility, rate, err_list)
 | 
	
		
			
				|  |  | +    # cerebro.plot()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +df = pd.DataFrame(
 | 
	
		
			
				|  |  | +    columns=['周期', '波动率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
 | 
	
		
			
				|  |  | +             '平均亏损', '最大亏损', '最小亏损'])
 | 
	
		
			
				|  |  | +if __name__ == '__main__':
 | 
	
		
			
				|  |  | +    starttime = dt.now()
 | 
	
		
			
				|  |  | +    print(starttime)
 | 
	
		
			
				|  |  | +    # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8', poolclass=NullPool)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # stocks = pd.read_sql_query(
 | 
	
		
			
				|  |  | +    #                     'select value from MA5_1d', engine_hlfx)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    fre = '1d'
 | 
	
		
			
				|  |  | +    db = pymysql.connect(host='localhost',
 | 
	
		
			
				|  |  | +                         user='root',
 | 
	
		
			
				|  |  | +                         port=3307,
 | 
	
		
			
				|  |  | +                         password='r6kEwqWU9!v3',
 | 
	
		
			
				|  |  | +                         database='qmt_stocks_tech')
 | 
	
		
			
				|  |  | +    cursor = db.cursor()
 | 
	
		
			
				|  |  | +    cursor.execute("show tables like '%%%s%%' " % fre)
 | 
	
		
			
				|  |  | +    table_list = [tuple[0] for tuple in cursor.fetchall()]
 | 
	
		
			
				|  |  | +    # print(table_list)
 | 
	
		
			
				|  |  | +    # table_list = table_list[0:100]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    list_date = mp.Manager().list()
 | 
	
		
			
				|  |  | +    thread_list = []
 | 
	
		
			
				|  |  | +    pool = mp.Pool(processes=mp.cpu_count())
 | 
	
		
			
				|  |  | +    for num in range(60, 180, 20):
 | 
	
		
			
				|  |  | +        for Volatility in range(5, 8, 1):
 | 
	
		
			
				|  |  | +            for rate in range(7, 8, 1):
 | 
	
		
			
				|  |  | +                step = math.ceil(len(table_list) / mp.cpu_count())
 | 
	
		
			
				|  |  | +                result = []
 | 
	
		
			
				|  |  | +                result_change = []
 | 
	
		
			
				|  |  | +                result_change_fall = []
 | 
	
		
			
				|  |  | +                err_list = []
 | 
	
		
			
				|  |  | +                print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
 | 
	
		
			
				|  |  | +                # for i in range(0, len(table_list), step):
 | 
	
		
			
				|  |  | +                stattime = dt.now()
 | 
	
		
			
				|  |  | +                # thd = threading.local()
 | 
	
		
			
				|  |  | +                # print(i)
 | 
	
		
			
				|  |  | +                # p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
 | 
	
		
			
				|  |  | +                #                                         num, Volatility, rate, err_list))
 | 
	
		
			
				|  |  | +                # thread_list.append(p)
 | 
	
		
			
				|  |  | +                pool.apply_async(func=backtrader,
 | 
	
		
			
				|  |  | +                                 args=(list_date, table_list, result, result_change, result_change_fall,
 | 
	
		
			
				|  |  | +                                       num, Volatility, rate, err_list,), error_callback=err_call_back)
 | 
	
		
			
				|  |  | +                # p.start()
 | 
	
		
			
				|  |  | +                # p.join()
 | 
	
		
			
				|  |  | +                # print(thread_list)
 | 
	
		
			
				|  |  | +    # for thread in thread_list:
 | 
	
		
			
				|  |  | +    #     thread.start()
 | 
	
		
			
				|  |  | +    # for thread in thread_list:
 | 
	
		
			
				|  |  | +    #     thread.join()
 | 
	
		
			
				|  |  | +    pool.close()
 | 
	
		
			
				|  |  | +    pool.join()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    edtime = dt.now()
 | 
	
		
			
				|  |  | +    print('总耗时:', edtime - starttime)
 | 
	
		
			
				|  |  | +    # df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)
 |