|
@@ -0,0 +1,250 @@
|
|
|
+import multiprocessing as mp
|
|
|
+import pandas as pd
|
|
|
+import pymysql
|
|
|
+from sqlalchemy import create_engine
|
|
|
+from datetime import datetime as dt
|
|
|
+
|
|
|
+
|
|
|
+import datetime
|
|
|
+
|
|
|
+
|
|
|
+def hlfx(stocks,fre,table_list):
|
|
|
+ engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
|
|
|
+ engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8')
|
|
|
+ for stock in stocks:
|
|
|
+
|
|
|
+ if ('stk%s_%s' % (stock, fre)) in table_list:
|
|
|
+
|
|
|
+ index_len = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 0]
|
|
|
+
|
|
|
+
|
|
|
+ startdate = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 1]
|
|
|
+
|
|
|
+ get_price = pd.read_sql_query(
|
|
|
+ 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine)
|
|
|
+ get_price = get_price.loc[get_price['date'] > startdate]
|
|
|
+ df_day = pd.read_sql_query(
|
|
|
+ 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (stock, fre), engine2)
|
|
|
+ if index_len > 2:
|
|
|
+
|
|
|
+ for i in get_price.index:
|
|
|
+
|
|
|
+ if (df_day.iloc[-1, 3] > get_price.loc[i, 'high']
|
|
|
+ and df_day.iloc[-1, 4] > get_price.loc[i, 'low']) \
|
|
|
+ or (df_day.iloc[-1, 3] < get_price.loc[i, 'high']
|
|
|
+ and df_day.iloc[-1, 4] < get_price.loc[i, 'low']):
|
|
|
+ df_day = pd.concat([df_day, get_price.loc[[i]]], ignore_index=True)
|
|
|
+
|
|
|
+
|
|
|
+ else:
|
|
|
+
|
|
|
+
|
|
|
+ if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
|
|
|
+ df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
|
|
|
+ df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
|
|
|
+ else:
|
|
|
+
|
|
|
+ df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
|
|
|
+ df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
|
|
|
+
|
|
|
+ if len(df_day.index) > 2:
|
|
|
+
|
|
|
+ for x in range(index_len, len(df_day.index)):
|
|
|
+ m = x - 1
|
|
|
+
|
|
|
+ if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and (
|
|
|
+ df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
|
|
|
+
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'L*'
|
|
|
+ while m:
|
|
|
+ if df_day.loc[m, 'HL'] == 'H':
|
|
|
+ if (x - m) > 3:
|
|
|
+ df_day.loc[x, 'HL'] = 'L'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+
|
|
|
+ pass
|
|
|
+ break
|
|
|
+ elif (df_day.loc[m, 'HL'] == 'L'):
|
|
|
+ if df_day.loc[x - 1, 'low'] < df_day.loc[m - 1, 'low']:
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'L'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+ break
|
|
|
+ else:
|
|
|
+ break
|
|
|
+ m = m - 1
|
|
|
+ if m == 0:
|
|
|
+ df_day.loc[x, 'HL'] = 'L'
|
|
|
+
|
|
|
+ elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
|
|
|
+ df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])):
|
|
|
+
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'H*'
|
|
|
+ while m:
|
|
|
+ if df_day.loc[m, 'HL'] == 'L':
|
|
|
+ if x - m > 3:
|
|
|
+ df_day.loc[x, 'HL'] = 'H'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+
|
|
|
+ pass
|
|
|
+ break
|
|
|
+ elif (df_day.loc[m, 'HL'] == 'H'):
|
|
|
+ if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'H'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+ pass
|
|
|
+
|
|
|
+ break
|
|
|
+ break
|
|
|
+ m = m - 1
|
|
|
+ if m == 0:
|
|
|
+ df_day.loc[x, 'HL'] = 'H'
|
|
|
+ else:
|
|
|
+ df_day.loc[x, 'HL'] = '-'
|
|
|
+
|
|
|
+ df_day[index_len + 1:].to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True,
|
|
|
+ if_exists='append')
|
|
|
+ else:
|
|
|
+ df_day = pd.concat([df_day, get_price], ignore_index=True)
|
|
|
+ df_day[index_len + 1:].to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True,
|
|
|
+ if_exists='append')
|
|
|
+ else:
|
|
|
+
|
|
|
+ df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
|
|
|
+ get_price = pd.read_sql_query(
|
|
|
+ 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine)
|
|
|
+
|
|
|
+ for i in get_price.index:
|
|
|
+ if i == 0 or i == 1:
|
|
|
+ df_day = pd.concat([df_day, get_price.iloc[[i]]], ignore_index=True)
|
|
|
+
|
|
|
+ elif (df_day.iloc[-1, 3] > get_price.loc[i, 'high']
|
|
|
+ and df_day.iloc[-1, 4] > get_price.loc[i, 'low']) \
|
|
|
+ or (df_day.iloc[-1, 3] < get_price.loc[i, 'high']
|
|
|
+ and df_day.iloc[-1, 4] < get_price.loc[i, 'low']):
|
|
|
+ df_day = pd.concat([df_day, get_price.loc[[i]]], ignore_index=True)
|
|
|
+
|
|
|
+ else:
|
|
|
+
|
|
|
+ if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
|
|
|
+ df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
|
|
|
+ df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
|
|
|
+ else:
|
|
|
+
|
|
|
+ df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price.loc[i, 'high'])
|
|
|
+ df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price.loc[i, 'low'])
|
|
|
+ if len(df_day.index) > 2:
|
|
|
+
|
|
|
+ for x in range(2, len(df_day.index)):
|
|
|
+ m = x - 1
|
|
|
+
|
|
|
+ if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and (
|
|
|
+ df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
|
|
|
+
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'L*'
|
|
|
+ while m:
|
|
|
+ if df_day.loc[m, 'HL'] == 'H':
|
|
|
+ if (x - m) > 3:
|
|
|
+ df_day.loc[x, 'HL'] = 'L'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+ pass
|
|
|
+
|
|
|
+ break
|
|
|
+ elif (df_day.loc[m, 'HL'] == 'L'):
|
|
|
+ if df_day.loc[x - 1, 'low'] < df_day.loc[m - 1, 'low']:
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'L'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+ pass
|
|
|
+
|
|
|
+ break
|
|
|
+ else:
|
|
|
+ break
|
|
|
+ m = m - 1
|
|
|
+ if m == 0:
|
|
|
+ df_day.loc[x, 'HL'] = 'L'
|
|
|
+
|
|
|
+ elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
|
|
|
+ df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])):
|
|
|
+
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'H*'
|
|
|
+ while m:
|
|
|
+ if df_day.loc[m, 'HL'] == 'L':
|
|
|
+ if x - m > 3:
|
|
|
+ df_day.loc[x, 'HL'] = 'H'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+
|
|
|
+ pass
|
|
|
+ break
|
|
|
+ elif (df_day.loc[m, 'HL'] == 'H'):
|
|
|
+ if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
|
|
|
+
|
|
|
+ df_day.loc[x, 'HL'] = 'H'
|
|
|
+ if x == len(df_day.index) - 1:
|
|
|
+ pass
|
|
|
+
|
|
|
+ break
|
|
|
+ break
|
|
|
+ m = m - 1
|
|
|
+ if m == 0:
|
|
|
+ df_day.loc[x, 'HL'] = 'H'
|
|
|
+ else:
|
|
|
+ df_day.loc[x, 'HL'] = '-'
|
|
|
+
|
|
|
+ df_day.to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True, if_exists='append')
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ engine_stocks_list = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ stocks = pd.read_sql_query(
|
|
|
+ 'select securities from stocks_list', engine_stocks_list)
|
|
|
+ stocks = stocks.iloc[-1, 0]
|
|
|
+ stocks = stocks.split(",")
|
|
|
+ print(len(stocks), type(stocks), stocks)
|
|
|
+
|
|
|
+
|
|
|
+ start = dt.now()
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ for fre in ['30m', '1d']:
|
|
|
+ start = dt.now()
|
|
|
+ print(fre)
|
|
|
+
|
|
|
+ db = pymysql.connect(host='localhost',
|
|
|
+ user='root',
|
|
|
+ port=3307,
|
|
|
+ password='r6kEwqWU9!v3',
|
|
|
+ database='hlfx')
|
|
|
+ cursor = db.cursor()
|
|
|
+ cursor.execute("show tables like '%%%s%%' " % fre)
|
|
|
+ table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
+ print('取得 table_list %s' % fre)
|
|
|
+
|
|
|
+ step = 800
|
|
|
+ mp_list = []
|
|
|
+ print(len(stocks))
|
|
|
+
|
|
|
+ for i in range(0, len(stocks), step):
|
|
|
+ p = mp.Process(target=hlfx, args=(stocks[i:i + step], fre, table_list, ))
|
|
|
+ mp_list.append(p)
|
|
|
+ p.start()
|
|
|
+
|
|
|
+ for processing in mp_list:
|
|
|
+ processing.join()
|
|
|
+
|
|
|
+
|
|
|
+ end = dt.now()
|
|
|
+ print('总时长:', (end - start).seconds)
|