|
@@ -0,0 +1,380 @@
|
|
|
|
+import os
|
|
|
|
+import traceback
|
|
|
|
+import numpy as np
|
|
|
|
+from sqlalchemy import create_engine
|
|
|
|
+import pandas as pd
|
|
|
|
+import pymysql
|
|
|
|
+import backtrader as bt
|
|
|
|
+import backtrader.indicators as btind
|
|
|
|
+import datetime
|
|
|
|
+import math
|
|
|
|
+from datetime import datetime as dt
|
|
|
|
+import multiprocessing as mp
|
|
|
|
+from multiprocessing import Pool, Lock, Value
|
|
|
|
+from backtrader.feeds import PandasData
|
|
|
|
+import platform
|
|
|
|
+import psutil
|
|
|
|
+import logging
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
|
|
+ max_overflow=-1)
|
|
|
|
+lock = Lock()
|
|
|
|
+counter = Value('i', 0)
|
|
|
|
+
|
|
|
|
+class MyPandasData(PandasData):
|
|
|
|
+ lines = ('hl', 'dif', 'dea', 'macd', 'rsi_6', 'rsi_12', 'rsi_24',)
|
|
|
|
+ params = (('hl', 7),
|
|
|
|
+ ('dif', 8),
|
|
|
|
+ ('dea', 9),
|
|
|
|
+ ('macd', 10),
|
|
|
|
+ ('rsi_6', 11),
|
|
|
|
+ ('rsi_12', 12),
|
|
|
|
+ ('rsi_24', 13),
|
|
|
|
+ )
|
|
|
|
+ '''
|
|
|
|
+ lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
|
|
|
|
+ , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
|
|
|
|
+ params = (('change_pct', 7),
|
|
|
|
+ ('net_amount_main', 8),
|
|
|
|
+ ('net_pct_main', 9),
|
|
|
|
+ ('net_amount_xl', 10),
|
|
|
|
+ ('net_pct_xl', 11),
|
|
|
|
+ ('net_amount_l', 12),
|
|
|
|
+ ('net_pct_l', 13),
|
|
|
|
+ ('net_amount_m', 14),
|
|
|
|
+ ('net_pct_m', 15),
|
|
|
|
+ ('net_amount_s', 16),
|
|
|
|
+ ('net_pct_s', 17),
|
|
|
|
+ )
|
|
|
|
+ '''
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class TestStrategy(bt.Strategy):
|
|
|
|
+ params = (
|
|
|
|
+ ("num", 3),
|
|
|
|
+ ('Volatility', 0),
|
|
|
|
+ ('rate', 3), # 注意要有逗号!!
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ def log(self, txt, dt=None):
|
|
|
|
+ ''' Logging function for this strategy'''
|
|
|
|
+ dt = dt or self.datas[0].datetime.date(0)
|
|
|
|
+ # print('%s, %s' % (dt.isoformat(), txt))
|
|
|
|
+
|
|
|
|
+ def __init__(self):
|
|
|
|
+ # self.num = num
|
|
|
|
+ # self.Volatility = Volatility/100
|
|
|
|
+ # Keep a reference to the "close" line in the data[0] dataseries
|
|
|
|
+ self.pos_price = 0
|
|
|
|
+ self.dataclose = self.datas[0].close
|
|
|
|
+ self.dataopen = self.datas[0].open
|
|
|
|
+ self.high = self.datas[0].high
|
|
|
|
+ self.low = self.datas[0].low
|
|
|
|
+ self.volume = self.datas[0].volume
|
|
|
|
+ self.hl = self.datas[0].hl
|
|
|
|
+ self.dif = self.datas[0].dif
|
|
|
|
+ self.dea = self.datas[0].dea
|
|
|
|
+ self.macd = self.datas[0].macd
|
|
|
|
+ self.rsi_6 = self.datas[0].rsi_6
|
|
|
|
+ self.rsi_12 = self.datas[0].rsi_12
|
|
|
|
+ self.rsi_24 = self.datas[0].rsi_24
|
|
|
|
+ # self.change_pct = self.datas[0].change_pct
|
|
|
|
+ # self.net_amount_main = self.datas[0].net_amount_main
|
|
|
|
+ # self.net_pct_main = self.datas[0].net_pct_main
|
|
|
|
+ # self.net_amount_xl = self.datas[0].net_amount_xl
|
|
|
|
+ # self.net_pct_xl = self.datas[0].net_pct_xl
|
|
|
|
+ # self.net_amount_l = self.datas[0].net_amount_l
|
|
|
|
+ # self.net_pct_l = self.datas[0].net_pct_l
|
|
|
|
+ self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
|
|
|
|
+ self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
|
|
|
|
+ self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
|
|
|
|
+ self.sma60 = btind.MovingAverageSimple(self.datas[0].close, period=60)
|
|
|
|
+
|
|
|
|
+ def notify_order(self, order):
|
|
|
|
+ """
|
|
|
|
+ 订单状态处理
|
|
|
|
+
|
|
|
|
+ Arguments:
|
|
|
|
+ order {object} -- 订单状态
|
|
|
|
+ """
|
|
|
|
+ if order.status in [order.Submitted, order.Accepted]:
|
|
|
|
+ # 如订单已被处理,则不用做任何事情
|
|
|
|
+ return
|
|
|
|
+
|
|
|
|
+ # 检查订单是否完成
|
|
|
|
+ if order.status in [order.Completed]:
|
|
|
|
+ if order.isbuy():
|
|
|
|
+ self.buyprice = order.executed.price
|
|
|
|
+ self.buycomm = order.executed.comm
|
|
|
|
+ self.bar_executed = len(self)
|
|
|
|
+
|
|
|
|
+ # 订单因为缺少资金之类的原因被拒绝执行
|
|
|
|
+ elif order.status in [order.Canceled, order.Margin, order.Rejected]:
|
|
|
|
+ pass
|
|
|
|
+ # self.log('Order Canceled/Margin/Rejected')
|
|
|
|
+
|
|
|
|
+ # 订单状态处理完成,设为空
|
|
|
|
+ self.order = None
|
|
|
|
+
|
|
|
|
+ def notify_trade(self, trade):
|
|
|
|
+ """
|
|
|
|
+ 交易成果
|
|
|
|
+
|
|
|
|
+ Arguments:
|
|
|
|
+ trade {object} -- 交易状态
|
|
|
|
+ """
|
|
|
|
+ if not trade.isclosed:
|
|
|
|
+ return
|
|
|
|
+
|
|
|
|
+ # 显示交易的毛利率和净利润
|
|
|
|
+ # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
|
|
|
|
+
|
|
|
|
+ def next(self):
|
|
|
|
+ # print(self.num,self.Volatility)
|
|
|
|
+ # Simply log the closing price of the series from the reference
|
|
|
|
+ # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
|
|
|
|
+ # and (self.sma5[-1] < self.sma10[-1])
|
|
|
|
+ # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3) \
|
|
|
|
+ # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
|
|
|
|
+
|
|
|
|
+ if len(self) > self.params.num:
|
|
|
|
+ vola = self.params.Volatility / 100
|
|
|
|
+ rate = self.params.rate / 100
|
|
|
|
+ lowest = np.min(self.low.get(size=self.params.num))
|
|
|
|
+ highest = np.max(self.high.get(size=self.params.num))
|
|
|
|
+
|
|
|
|
+ # > self.sma5[-1]
|
|
|
|
+ # and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
|
|
|
|
+ # (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))) \
|
|
|
|
+ if self.hl[-1] == 2 or self.hl[-1] == 1:
|
|
|
|
+ m = -2
|
|
|
|
+ self.order = self.buy()
|
|
|
|
+ self.pos_price = self.low[-1]
|
|
|
|
+
|
|
|
|
+ while True:
|
|
|
|
+ if (self.hl[m] == 2 or self.hl[m] == 1) and self.macd[m] > self.macd[-1] \
|
|
|
|
+ and self.dataclose[0] > self.sma5[0] \
|
|
|
|
+ and self.dataclose[-1] > self.dataopen[-1] \
|
|
|
|
+ and (self.sma10[-2] - self.sma5[-2]) < (self.sma10[-1] - self.sma5[-1]) \
|
|
|
|
+ and self.low[-2] < self.sma5[-2] * (1 - rate) \
|
|
|
|
+ and self.sma5[-1] < self.sma10[-1] < self.sma20[-1] < self.sma20[-2] < self.sma20[-3] \
|
|
|
|
+ and lowest * (1 - vola) < self.low[-1] < lowest * (1 + vola):
|
|
|
|
+ self.order = self.buy()
|
|
|
|
+ self.pos_price = self.low[-1]
|
|
|
|
+ break
|
|
|
|
+ m -= 1
|
|
|
|
+ if m + len(self) == 2:
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ # elif (self.hl[0] == 5 or self.dataclose[0] < self.sma5[0]):
|
|
|
|
+ elif self.dataclose[0] < self.sma5[0] or self.sma5[0] < self.sma5[-1] \
|
|
|
|
+ or self.dataclose[0] < self.pos_price or self.high[0] > self.sma5[0] * (1 + vola):
|
|
|
|
+ self.order = self.close()
|
|
|
|
+ self.pos_price = 0
|
|
|
|
+
|
|
|
|
+ def stop(self):
|
|
|
|
+ # pass
|
|
|
|
+ self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def err_call_back(err):
|
|
|
|
+ print(f'出错啦~ error:{str(err)}')
|
|
|
|
+ traceback.format_exc(err)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def to_df(lt):
|
|
|
|
+ print('开始存数据')
|
|
|
|
+ df = pd.DataFrame(list(lt),
|
|
|
|
+ columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利',
|
|
|
|
+ '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损', '盈亏对比'])
|
|
|
|
+ df.sort_values(by=['周期', '波动率', 'MA5斜率'], ascending=True, inplace=True)
|
|
|
|
+ df = df.reset_index(drop=True)
|
|
|
|
+ if platform.node() == 'DanieldeMBP.lan':
|
|
|
|
+ df.to_csv(f"/Users/daniel/Documents/策略/策略穷举-均线粘连后底分型{dt.now().strftime('%Y%m%d%H%m%S')}.csv",
|
|
|
|
+ index=True,
|
|
|
|
+ encoding='utf_8_sig', mode='w')
|
|
|
|
+ else:
|
|
|
|
+ df.to_csv(f"C:\Daniel\策略\策略穷举底分型_均线缠绕_只买一次{dt.now().strftime('%Y%m%d%H%m%S')}.csv", index=True,
|
|
|
|
+ encoding='utf_8_sig', mode='w')
|
|
|
|
+ print(f'结果:, \n, {df}')
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def backtrader(table_list, stock, result, result_change, result_change_fall, num, Volatility, rate, err_list):
|
|
|
|
+ global engine, counter, lock
|
|
|
|
+ conn = engine.connect()
|
|
|
|
+ stk_df = pd.read_sql_table(stock, conn)
|
|
|
|
+ stk_df.time = pd.to_datetime(stk_df.time)
|
|
|
|
+ # stk_df = stk_df[stk_df['HL'] != '-']
|
|
|
|
+ try:
|
|
|
|
+ stk_df['HL'] = stk_df['HL'].map({'L': 1,
|
|
|
|
+ 'LL': 2,
|
|
|
|
+ 'L*': 3,
|
|
|
|
+ 'H': 4,
|
|
|
|
+ 'HH': 5,
|
|
|
|
+ 'H*': 6,
|
|
|
|
+ '-': 7})
|
|
|
|
+ except BaseException:
|
|
|
|
+ print(f'{stock}数据不全,不做测试')
|
|
|
|
+ else:
|
|
|
|
+ conn.close()
|
|
|
|
+ if len(stk_df) > 60:
|
|
|
|
+ cerebro = bt.Cerebro()
|
|
|
|
+ cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
|
|
|
|
+ cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
|
|
|
|
+ data = MyPandasData(dataname=stk_df,
|
|
|
|
+ fromdate=datetime.datetime(2017, 1, 1),
|
|
|
|
+ todate=datetime.datetime(2022, 10, 30),
|
|
|
|
+ datetime='time',
|
|
|
|
+ open='open_back',
|
|
|
|
+ close='close_back',
|
|
|
|
+ high='high_back',
|
|
|
|
+ low='low_back',
|
|
|
|
+ volume='volume_back',
|
|
|
|
+ hl='HL',
|
|
|
|
+ dif='dif',
|
|
|
|
+ dea='dea',
|
|
|
|
+ macd='macd',
|
|
|
|
+ rsi_6='rsi_6',
|
|
|
|
+ rsi_12='rsi_12',
|
|
|
|
+ rsi_24='rsi_24',
|
|
|
|
+ )
|
|
|
|
+ # print('取值完成')
|
|
|
|
+ cerebro.adddata(data, name=stock)
|
|
|
|
+ cerebro.broker.setcash(100000.0)
|
|
|
|
+ cerebro.broker.setcommission(0.005)
|
|
|
|
+ cerebro.addanalyzer(bt.analyzers.PyFolio)
|
|
|
|
+ # 策略执行前的资金
|
|
|
|
+ # print('启动资金: %.2f' % cerebro.broker.getvalue())
|
|
|
|
+ try:
|
|
|
|
+ # 策略执行
|
|
|
|
+ cerebro.run()
|
|
|
|
+ except IndexError as e:
|
|
|
|
+ err_list.append(stock)
|
|
|
|
+ # print(f'{num}天波动率为{Volatility}%MA5斜率为{rate}的{stock}错误')
|
|
|
|
+ # print(e)
|
|
|
|
+ else:
|
|
|
|
+ if cerebro.broker.getvalue() > 100000.0:
|
|
|
|
+ result_change.append(cerebro.broker.getvalue() - 100000)
|
|
|
|
+ result.append(stock)
|
|
|
|
+ # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
|
|
|
|
+ # print(result)
|
|
|
|
+ elif cerebro.broker.getvalue() <= 100000.0:
|
|
|
|
+ result_change_fall.append(cerebro.broker.getvalue() - 100000)
|
|
|
|
+ # print('aaaaaaaaaaa')
|
|
|
|
+ # print(result_change_fall)
|
|
|
|
+ # print('最终资金: %.2f' % cerebro.broker.getvalue())
|
|
|
|
+ finally:
|
|
|
|
+ with lock:
|
|
|
|
+ counter.value += 1
|
|
|
|
+ logging.info('执行完成:(%d / %d) 进程号: %d --------------- %s', counter.value, len(table_list), os.getpid(), stock)
|
|
|
|
+
|
|
|
|
+ # print(f'已计算{counter.value}/{len(table_list)}只股票')
|
|
|
|
+ # print(f'已计算{(len(result) + len(result_change_fall)+len(err_list))}/{len(table_list)}只股票')
|
|
|
|
+ '''
|
|
|
|
+ if len(result) * len(result_change) * len(result_change_fall) != 0:
|
|
|
|
+ print(f'以{num}内最低值波动{Volatility}为支撑、MA5斜率为{rate}%,结果状态为:')
|
|
|
|
+ print('正盈利的个股为:', len(result), '成功率为:', len(result) / len(table_list))
|
|
|
|
+ print(
|
|
|
|
+ f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change) / len(result)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
|
|
|
|
+ print(
|
|
|
|
+ f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall) / len(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
|
|
|
|
+
|
|
|
|
+ # '周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损', '盈亏对比']
|
|
|
|
+ list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
|
+ np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
|
+ np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
|
+ np.nanmin(result_change_fall), np.nanmax(result_change_fall),
|
|
|
|
+ len(result_change) / len(result_change_fall)])
|
|
|
|
+ # to_df(list_date)
|
|
|
|
+ endtime = dt.now()
|
|
|
|
+ print(f'{num}天波动率为{Volatility}%MA5斜率为{rate},myPID is {os.getpid()}.本轮耗时为{endtime - sttime}')
|
|
|
|
+ else:
|
|
|
|
+ print('阿欧', len(result), len(result_change), len(result_change_fall), num, Volatility, rate, err_list)
|
|
|
|
+ list_date.append([num, Volatility, rate, 0, len(result) / len(table_list), len(result),
|
|
|
|
+ len(result), len(result), len(result), len(result), len(result), len(result), 0])
|
|
|
|
+ '''
|
|
|
|
+ # list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
|
+ # np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
|
+ # np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
|
+ # np.nanmin(result_change_fall), np.nanmax(result_change_fall),
|
|
|
|
+ # len(result_change) / len(result_change_fall)])
|
|
|
|
+ # cerebro.plot()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# df = pd.DataFrame(
|
|
|
|
+# columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
|
|
|
|
+# '平均亏损', '最大亏损', '最小亏损'])
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ logger = mp.log_to_stderr()
|
|
|
|
+ logger.setLevel(logging.INFO)
|
|
|
|
+ starttime = dt.now()
|
|
|
|
+ print(starttime)
|
|
|
|
+ pus = psutil.Process()
|
|
|
|
+
|
|
|
|
+ fre = '1d'
|
|
|
|
+ db = pymysql.connect(host='localhost',
|
|
|
|
+ user='root',
|
|
|
|
+ port=3307,
|
|
|
|
+ password='r6kEwqWU9!v3',
|
|
|
|
+ database='qmt_stocks_tech')
|
|
|
|
+ cursor = db.cursor()
|
|
|
|
+ cursor.execute("show tables like '%%%s%%' " % fre)
|
|
|
|
+ table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
|
+ # print(table_list)
|
|
|
|
+ # table_list = table_list[0:500]
|
|
|
|
+ print(f'计算个股数为:{len(table_list)}')
|
|
|
|
+
|
|
|
|
+ list_date = []
|
|
|
|
+ thread_list = []
|
|
|
|
+ pool = mp.Pool(processes=mp.cpu_count())
|
|
|
|
+ # pool = mp.Pool(processes=8)
|
|
|
|
+ for num in range(60, 80, 20):
|
|
|
|
+ for Volatility in range(7, 8, 1):
|
|
|
|
+ for rate in range(3, 4, 1):
|
|
|
|
+ # step = math.ceil(len(table_list) / mp.cpu_count())
|
|
|
|
+ result = mp.Manager().list()
|
|
|
|
+ result_change = mp.Manager().list()
|
|
|
|
+ result_change_fall = mp.Manager().list()
|
|
|
|
+ err_list = mp.Manager().list()
|
|
|
|
+ print(f'{num}天波动率为{Volatility}%MA5斜率为{rate}')
|
|
|
|
+ # for i in range(0, len(table_list), step):
|
|
|
|
+ stattime = dt.now()
|
|
|
|
+ # 保存AsyncResult对象的列表
|
|
|
|
+ async_results = []
|
|
|
|
+ # thd = threading.local()
|
|
|
|
+ # print(i)
|
|
|
|
+ # p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
|
|
|
|
+ # num, Volatility, rate, err_list))
|
|
|
|
+ # thread_list.append(p)
|
|
|
|
+ for stock in table_list:
|
|
|
|
+ async_result = pool.apply_async(func=backtrader,
|
|
|
|
+ args=(table_list, stock, result, result_change, result_change_fall,
|
|
|
|
+ num, Volatility, rate, err_list,),
|
|
|
|
+ error_callback=err_call_back)
|
|
|
|
+ async_results.append(async_result)
|
|
|
|
+ # p.start()
|
|
|
|
+ pool.close()
|
|
|
|
+ pool.join()
|
|
|
|
+
|
|
|
|
+ # 统计返回为 None 的结果数量
|
|
|
|
+ none_count = 0
|
|
|
|
+ for i, result_async in enumerate(async_results):
|
|
|
|
+ _ = result_async.get() # 获取任务的结果
|
|
|
|
+ if _ is None:
|
|
|
|
+ none_count += 1
|
|
|
|
+ print(f'计算总数={len(result) + len(result_change_fall)}\n计数为:{none_count}')
|
|
|
|
+ list_date.append(
|
|
|
|
+ [num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
|
+ np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
|
+ np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
|
+ np.nanmin(result_change_fall), np.nanmax(result_change_fall),
|
|
|
|
+ len(result_change) / len(result_change_fall)])
|
|
|
|
+ print(list_date)
|
|
|
|
+
|
|
|
|
+ # to_df(list_date)
|
|
|
|
+
|
|
|
|
+ edtime = dt.now()
|
|
|
|
+ print('总耗时:', edtime - starttime)
|
|
|
|
+ # df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)
|