Browse Source

实时计算HLFX结合MACD指标判断背驰后入HLFX_Pool

Daniel 2 years ago
parent
commit
6bd79904fe
1 changed files with 345 additions and 0 deletions
  1. 345 0
      real_time_update_qbh_hlfx_1025.py

+ 345 - 0
real_time_update_qbh_hlfx_1025.py

@@ -0,0 +1,345 @@
+from jqdatasdk import *
+import pandas as pd
+import pymysql
+from sqlalchemy import create_engine
+import threading
+from datetime import datetime as dt
+from jqdatasdk.technical_analysis import *
+
+auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
+stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
+# stocks = stocks[0:200]
+
+def hlfx(stocks, engine_stock, engine_hlfx):
+    for thd.stock in stocks:
+        print(thd.stock)
+        if ('stk%s_%s' % (thd.stock, fre)) in table_list:
+            # 有历史数据
+            index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 0]
+            startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 1]
+
+            # thd.get_price = pd.read_sql_query(
+            #     'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
+            # thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
+            thd.get_price = df.loc[thd.stock]
+
+            thd.df_day = pd.read_sql_query(
+                'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine_hlfx)
+
+            # 先处理去包含
+            for i in thd.get_price.index:
+                # 不包含
+                if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
+                    and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
+                        or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
+                            and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
+                    thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
+
+                # 包含
+                else:
+                    # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
+                    # 左高,下降
+                    if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
+                        thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
+                        thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
+                    else:
+                        # 右高,上升
+                        thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
+                        thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
+
+            # 寻找顶底分型
+            if len(thd.df_day.index) > 2:
+                x = len(thd.df_day.index)-1
+                m = x - 1
+                # 底
+                if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
+                        thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
+                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
+                    # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
+                    thd.df_day.loc[x, 'HL'] = 'L*'
+                    while m:
+                        if thd.df_day.loc[m, 'HL'] == 'H':
+                            if (x - m) > 3:
+                                thd.df_day.loc[x, 'HL'] = 'L'
+                                # 此处可以获得MACD指标
+                                # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
+                                    # pass
+                                print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '\n',
+                                      '笔形成————买买买买买!!')
+                                results.append(thd.stock)
+                                print('222')
+                            # break
+                        elif (thd.df_day.loc[m, 'HL'] == 'L'):
+                            if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
+                                # 前一个为底,且中间存在不包含 or 更低的底
+                                thd.df_day.loc[x, 'HL'] = 'L'
+                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[x, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[m, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
+                                    # pass
+                                    # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
+                                    #       m_macd_dif[thd.stock])
+                                    # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
+                                    #       x_macd_dif[thd.stock])
+                                    print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], 'MACD背驰————买吗?!')
+                                    results.append(thd.stock)
+                                    print('333')
+                                break
+                            else:
+                                # 底更低但没有背驰
+                                break
+                        m = m - 1
+                        if m == 0:
+                            # 第一个底
+                            thd.df_day.loc[x, 'HL'] = 'L'
+                            results.append(thd.stock)
+                            print('444')
+                # 顶
+                elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
+                        thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
+                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
+                    #     stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
+                    thd.df_day.loc[x, 'HL'] = 'H*'
+                    while m:
+                        if thd.df_day.loc[m, 'HL'] == 'L':
+                            if x - m > 3:
+                                thd.df_day.loc[x, 'HL'] = 'H'
+                                print(thd.stock, '!!!!!!!', '\n', thd.df_day.loc[x, 'date'], '笔形成————卖卖卖卖卖卖卖!')
+                                # pass
+                                results_short.append(thd.stock)
+                                if thd.stock in results:
+                                    results.remove(thd.stock)
+                            # break
+                        elif (thd.df_day.loc[m, 'HL'] == 'H'):
+                            if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
+                                # 前一个为顶,且中间存在不包含 or 更高的顶
+                                thd.df_day.loc[x, 'HL'] = 'H'
+                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[x, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[m, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                if x_macd_dif[thd.stock] < m_macd_dif[thd.stock]:
+                                    # pass
+                                    print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
+                                    results_short.append(thd.stock)
+                                    if thd.stock in results:
+                                        results.remove(thd.stock)
+                                break
+                            break
+                        m = m - 1
+                        if m == 0:
+                            thd.df_day.loc[x, 'HL'] = 'H'
+                            results_short.append(thd.stock)
+                            if thd.stock in results:
+                                results.remove(thd.stock)
+                else:
+                    thd.df_day.loc[x, 'HL'] = '-'
+
+            # 更新数据库
+            # 可以使用normalize_code(code) 方法 改变代码格式
+            # thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
+        else:
+            # 没有历史数据表
+            thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
+            thd.get_price = pd.read_sql_query(
+                'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
+            # 先处理去包含
+            for i in thd.get_price.index:
+                if i == 0 or i == 1:
+                    thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
+                # 不包含
+                elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
+                      and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
+                        or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
+                            and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
+                    thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
+                # 包含
+                else:
+                    # 左高,下降
+                    if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
+                        thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
+                        thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
+                    else:
+                        # 右高,上升
+                        thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
+                        thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
+            if len(thd.df_day.index) > 2:
+                # 寻找顶底分型
+                x = len(thd.df_day.index)-1
+                m = x - 1
+                # 底
+                if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
+                        thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
+                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
+                    # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
+                    thd.df_day.loc[x, 'HL'] = 'L*'
+                    while m:
+                        if thd.df_day.loc[m, 'HL'] == 'H':
+                            if (x - m) > 3:
+                                thd.df_day.loc[x, 'HL'] = 'L'
+                                # 此处可以获得MACD指标
+                                # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
+                                # pass
+                                print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
+                                results.append(thd.stock)
+                            # break
+                        elif (thd.df_day.loc[m, 'HL'] == 'L'):
+                            if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
+                                # 前一个为底,且中间存在不包含 or 更低的底
+                                thd.df_day.loc[x, 'HL'] = 'L'
+                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[x, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[m, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
+                                    # pass
+                                    # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
+                                    #       m_macd_dif[thd.stock])
+                                    # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
+                                    #       x_macd_dif[thd.stock])
+                                    print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],
+                                          'MACD背驰————买吗?!')
+                                    results.append(thd.stock)
+
+                                break
+                            else:
+                                break
+                        m = m - 1
+                        if m == 0:
+                            thd.df_day.loc[x, 'HL'] = 'L'
+                            results.append(thd.stock)
+                # 顶
+                elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
+                        thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
+                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
+                    #     stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
+                    thd.df_day.loc[x, 'HL'] = 'H*'
+                    while m:
+                        if thd.df_day.loc[m, 'HL'] == 'L':
+                            if x - m > 3:
+                                thd.df_day.loc[x, 'HL'] = 'H'
+                                print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
+                                # pass
+                                results.remove(thd.stock)
+                            # break
+                        elif (thd.df_day.loc[m, 'HL'] == 'H'):
+                            if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
+                                # 前一个为顶,且中间存在不包含 or 更高的顶
+                                thd.df_day.loc[x, 'HL'] = 'H'
+                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[x, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
+                                                                           check_date=thd.df_day.loc[m, 'date'],
+                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
+                                if x_macd_dif[thd.stock] < m_macd_dif[
+                                    thd.stock]:
+                                    # pass
+                                    print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
+                                    results.remove(thd.stock)
+                                break
+                            break
+                        m = m - 1
+                        if m == 0:
+                            thd.df_day.loc[x, 'HL'] = 'H'
+                            results.remove(thd.stock)
+                else:
+                    thd.df_day.loc[x, 'HL'] = '-'
+            # print(thd.df_day[-20:])
+            # 更新数据库
+            # thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
+
+start = dt.now()
+while True:
+    now_date = dt.now()
+    date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
+    date_morning_end = now_date.replace(hour=11, minute=31, second=0)
+    date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
+    date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
+    # print(now_date,date_morning_begin,date_morning_end,date_afternooe_begin,date_afternooe_end)
+    if date_morning_begin < now_date < date_afternooe_end:
+    # if True:
+        for fre in ['1d']:
+            start = dt.now()
+            print(fre)
+            # 连接数据库
+            db = pymysql.connect(host='localhost',
+                                 user='root',
+                                 port=3307,
+                                 password='r6kEwqWU9!v3',
+                                 database='hlfx')
+            cursor = db.cursor()
+            cursor.execute("show tables like '%%%s%%' " % fre)
+            table_list = [tuple[0] for tuple in cursor.fetchall()]
+            print('取得 table_list %s' % fre)
+
+            db_pool = pymysql.connect(host='localhost',
+                                      user='root',
+                                      port=3307,
+                                      password='r6kEwqWU9!v3',
+                                      database='hlfx_pool')
+            cursor_pool = db_pool.cursor()
+
+            stk = locals()
+            thd = threading.local()
+            # 进程准备
+            step = 600
+            thread_list = []
+            engine_stock = []
+            engine_hlfx = []
+            times_engine = 0
+            engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
+
+            # 获得hlfx_pool池子
+            # results = pd.read_sql_query(
+            #                 'select value from `%s`' % fre, engine_hlfx_pool)
+            # for i in range(0, len(results)):
+            #     print(len(results.iloc[i, 0].split(",")))
+
+            results = pd.read_sql_query(
+                            'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(",")
+            results_short = []
+            print('数据库读取', len(results))
+
+            df = get_bars(stocks, count=20, unit=fre,
+                          fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
+            print(dt.now(), 'get_bars 成功')
+
+            for i in range(0, len(stocks), step):
+                engine_stock.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
+                engine_hlfx.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
+                thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine_stock[times_engine], engine_hlfx[times_engine]))
+                times_engine = times_engine + 1
+                thread.start()
+                thread_list.append(thread)
+
+            for thread in thread_list:
+                thread.join()
+            db.close()
+
+
+
+            time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
+            results_list =','.join(set(results))
+            print(set(results))
+            sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
+            cursor_pool.execute(sql)
+            db_pool.commit()
+            print(fre, '\n', '做多:', len(set(results)),  set(results))
+            print('做空', len(set(results_short)), set(results_short))
+
+
+            end= dt.now()
+            print('总时长:', (end - start).seconds)
+    elif now_date>date_afternooe_end:
+        pass
+        # print("HLFX_收盘了",now_date)
+        # break