|  | @@ -0,0 +1,345 @@
 | 
	
		
			
				|  |  | +from jqdatasdk import *
 | 
	
		
			
				|  |  | +import pandas as pd
 | 
	
		
			
				|  |  | +import pymysql
 | 
	
		
			
				|  |  | +from sqlalchemy import create_engine
 | 
	
		
			
				|  |  | +import threading
 | 
	
		
			
				|  |  | +from datetime import datetime as dt
 | 
	
		
			
				|  |  | +from jqdatasdk.technical_analysis import *
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
 | 
	
		
			
				|  |  | +stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
 | 
	
		
			
				|  |  | +# stocks = stocks[0:200]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def hlfx(stocks, engine_stock, engine_hlfx):
 | 
	
		
			
				|  |  | +    for thd.stock in stocks:
 | 
	
		
			
				|  |  | +        print(thd.stock)
 | 
	
		
			
				|  |  | +        if ('stk%s_%s' % (thd.stock, fre)) in table_list:
 | 
	
		
			
				|  |  | +            # 有历史数据
 | 
	
		
			
				|  |  | +            index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 0]
 | 
	
		
			
				|  |  | +            startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 1]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # thd.get_price = pd.read_sql_query(
 | 
	
		
			
				|  |  | +            #     'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
 | 
	
		
			
				|  |  | +            # thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
 | 
	
		
			
				|  |  | +            thd.get_price = df.loc[thd.stock]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            thd.df_day = pd.read_sql_query(
 | 
	
		
			
				|  |  | +                'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine_hlfx)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # 先处理去包含
 | 
	
		
			
				|  |  | +            for i in thd.get_price.index:
 | 
	
		
			
				|  |  | +                # 不包含
 | 
	
		
			
				|  |  | +                if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
 | 
	
		
			
				|  |  | +                    and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
 | 
	
		
			
				|  |  | +                        or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
 | 
	
		
			
				|  |  | +                            and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
 | 
	
		
			
				|  |  | +                    thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                # 包含
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
 | 
	
		
			
				|  |  | +                    # 左高,下降
 | 
	
		
			
				|  |  | +                    if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
 | 
	
		
			
				|  |  | +                    else:
 | 
	
		
			
				|  |  | +                        # 右高,上升
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # 寻找顶底分型
 | 
	
		
			
				|  |  | +            if len(thd.df_day.index) > 2:
 | 
	
		
			
				|  |  | +                x = len(thd.df_day.index)-1
 | 
	
		
			
				|  |  | +                m = x - 1
 | 
	
		
			
				|  |  | +                # 底
 | 
	
		
			
				|  |  | +                if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
 | 
	
		
			
				|  |  | +                        thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
 | 
	
		
			
				|  |  | +                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
 | 
	
		
			
				|  |  | +                    # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +                    thd.df_day.loc[x, 'HL'] = 'L*'
 | 
	
		
			
				|  |  | +                    while m:
 | 
	
		
			
				|  |  | +                        if thd.df_day.loc[m, 'HL'] == 'H':
 | 
	
		
			
				|  |  | +                            if (x - m) > 3:
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'L'
 | 
	
		
			
				|  |  | +                                # 此处可以获得MACD指标
 | 
	
		
			
				|  |  | +                                # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
 | 
	
		
			
				|  |  | +                                    # pass
 | 
	
		
			
				|  |  | +                                print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '\n',
 | 
	
		
			
				|  |  | +                                      '笔形成————买买买买买!!')
 | 
	
		
			
				|  |  | +                                results.append(thd.stock)
 | 
	
		
			
				|  |  | +                                print('222')
 | 
	
		
			
				|  |  | +                            # break
 | 
	
		
			
				|  |  | +                        elif (thd.df_day.loc[m, 'HL'] == 'L'):
 | 
	
		
			
				|  |  | +                            if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
 | 
	
		
			
				|  |  | +                                # 前一个为底,且中间存在不包含 or 更低的底
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'L'
 | 
	
		
			
				|  |  | +                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[x, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[m, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
 | 
	
		
			
				|  |  | +                                    # pass
 | 
	
		
			
				|  |  | +                                    # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
 | 
	
		
			
				|  |  | +                                    #       m_macd_dif[thd.stock])
 | 
	
		
			
				|  |  | +                                    # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
 | 
	
		
			
				|  |  | +                                    #       x_macd_dif[thd.stock])
 | 
	
		
			
				|  |  | +                                    print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], 'MACD背驰————买吗?!')
 | 
	
		
			
				|  |  | +                                    results.append(thd.stock)
 | 
	
		
			
				|  |  | +                                    print('333')
 | 
	
		
			
				|  |  | +                                break
 | 
	
		
			
				|  |  | +                            else:
 | 
	
		
			
				|  |  | +                                # 底更低但没有背驰
 | 
	
		
			
				|  |  | +                                break
 | 
	
		
			
				|  |  | +                        m = m - 1
 | 
	
		
			
				|  |  | +                        if m == 0:
 | 
	
		
			
				|  |  | +                            # 第一个底
 | 
	
		
			
				|  |  | +                            thd.df_day.loc[x, 'HL'] = 'L'
 | 
	
		
			
				|  |  | +                            results.append(thd.stock)
 | 
	
		
			
				|  |  | +                            print('444')
 | 
	
		
			
				|  |  | +                # 顶
 | 
	
		
			
				|  |  | +                elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
 | 
	
		
			
				|  |  | +                        thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
 | 
	
		
			
				|  |  | +                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
 | 
	
		
			
				|  |  | +                    #     stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +                    thd.df_day.loc[x, 'HL'] = 'H*'
 | 
	
		
			
				|  |  | +                    while m:
 | 
	
		
			
				|  |  | +                        if thd.df_day.loc[m, 'HL'] == 'L':
 | 
	
		
			
				|  |  | +                            if x - m > 3:
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'H'
 | 
	
		
			
				|  |  | +                                print(thd.stock, '!!!!!!!', '\n', thd.df_day.loc[x, 'date'], '笔形成————卖卖卖卖卖卖卖!')
 | 
	
		
			
				|  |  | +                                # pass
 | 
	
		
			
				|  |  | +                                results_short.append(thd.stock)
 | 
	
		
			
				|  |  | +                                if thd.stock in results:
 | 
	
		
			
				|  |  | +                                    results.remove(thd.stock)
 | 
	
		
			
				|  |  | +                            # break
 | 
	
		
			
				|  |  | +                        elif (thd.df_day.loc[m, 'HL'] == 'H'):
 | 
	
		
			
				|  |  | +                            if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
 | 
	
		
			
				|  |  | +                                # 前一个为顶,且中间存在不包含 or 更高的顶
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'H'
 | 
	
		
			
				|  |  | +                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[x, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[m, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                if x_macd_dif[thd.stock] < m_macd_dif[thd.stock]:
 | 
	
		
			
				|  |  | +                                    # pass
 | 
	
		
			
				|  |  | +                                    print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
 | 
	
		
			
				|  |  | +                                    results_short.append(thd.stock)
 | 
	
		
			
				|  |  | +                                    if thd.stock in results:
 | 
	
		
			
				|  |  | +                                        results.remove(thd.stock)
 | 
	
		
			
				|  |  | +                                break
 | 
	
		
			
				|  |  | +                            break
 | 
	
		
			
				|  |  | +                        m = m - 1
 | 
	
		
			
				|  |  | +                        if m == 0:
 | 
	
		
			
				|  |  | +                            thd.df_day.loc[x, 'HL'] = 'H'
 | 
	
		
			
				|  |  | +                            results_short.append(thd.stock)
 | 
	
		
			
				|  |  | +                            if thd.stock in results:
 | 
	
		
			
				|  |  | +                                results.remove(thd.stock)
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    thd.df_day.loc[x, 'HL'] = '-'
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # 更新数据库
 | 
	
		
			
				|  |  | +            # 可以使用normalize_code(code) 方法 改变代码格式
 | 
	
		
			
				|  |  | +            # thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            # 没有历史数据表
 | 
	
		
			
				|  |  | +            thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
 | 
	
		
			
				|  |  | +            thd.get_price = pd.read_sql_query(
 | 
	
		
			
				|  |  | +                'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
 | 
	
		
			
				|  |  | +            # 先处理去包含
 | 
	
		
			
				|  |  | +            for i in thd.get_price.index:
 | 
	
		
			
				|  |  | +                if i == 0 or i == 1:
 | 
	
		
			
				|  |  | +                    thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +                # 不包含
 | 
	
		
			
				|  |  | +                elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
 | 
	
		
			
				|  |  | +                      and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
 | 
	
		
			
				|  |  | +                        or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
 | 
	
		
			
				|  |  | +                            and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
 | 
	
		
			
				|  |  | +                    thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +                # 包含
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    # 左高,下降
 | 
	
		
			
				|  |  | +                    if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
 | 
	
		
			
				|  |  | +                    else:
 | 
	
		
			
				|  |  | +                        # 右高,上升
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
 | 
	
		
			
				|  |  | +                        thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
 | 
	
		
			
				|  |  | +            if len(thd.df_day.index) > 2:
 | 
	
		
			
				|  |  | +                # 寻找顶底分型
 | 
	
		
			
				|  |  | +                x = len(thd.df_day.index)-1
 | 
	
		
			
				|  |  | +                m = x - 1
 | 
	
		
			
				|  |  | +                # 底
 | 
	
		
			
				|  |  | +                if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
 | 
	
		
			
				|  |  | +                        thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
 | 
	
		
			
				|  |  | +                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
 | 
	
		
			
				|  |  | +                    # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +                    thd.df_day.loc[x, 'HL'] = 'L*'
 | 
	
		
			
				|  |  | +                    while m:
 | 
	
		
			
				|  |  | +                        if thd.df_day.loc[m, 'HL'] == 'H':
 | 
	
		
			
				|  |  | +                            if (x - m) > 3:
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'L'
 | 
	
		
			
				|  |  | +                                # 此处可以获得MACD指标
 | 
	
		
			
				|  |  | +                                # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
 | 
	
		
			
				|  |  | +                                # pass
 | 
	
		
			
				|  |  | +                                print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
 | 
	
		
			
				|  |  | +                                results.append(thd.stock)
 | 
	
		
			
				|  |  | +                            # break
 | 
	
		
			
				|  |  | +                        elif (thd.df_day.loc[m, 'HL'] == 'L'):
 | 
	
		
			
				|  |  | +                            if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
 | 
	
		
			
				|  |  | +                                # 前一个为底,且中间存在不包含 or 更低的底
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'L'
 | 
	
		
			
				|  |  | +                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[x, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[m, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
 | 
	
		
			
				|  |  | +                                    # pass
 | 
	
		
			
				|  |  | +                                    # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
 | 
	
		
			
				|  |  | +                                    #       m_macd_dif[thd.stock])
 | 
	
		
			
				|  |  | +                                    # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
 | 
	
		
			
				|  |  | +                                    #       x_macd_dif[thd.stock])
 | 
	
		
			
				|  |  | +                                    print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],
 | 
	
		
			
				|  |  | +                                          'MACD背驰————买吗?!')
 | 
	
		
			
				|  |  | +                                    results.append(thd.stock)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                                break
 | 
	
		
			
				|  |  | +                            else:
 | 
	
		
			
				|  |  | +                                break
 | 
	
		
			
				|  |  | +                        m = m - 1
 | 
	
		
			
				|  |  | +                        if m == 0:
 | 
	
		
			
				|  |  | +                            thd.df_day.loc[x, 'HL'] = 'L'
 | 
	
		
			
				|  |  | +                            results.append(thd.stock)
 | 
	
		
			
				|  |  | +                # 顶
 | 
	
		
			
				|  |  | +                elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
 | 
	
		
			
				|  |  | +                        thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
 | 
	
		
			
				|  |  | +                    # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
 | 
	
		
			
				|  |  | +                    #     stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +                    thd.df_day.loc[x, 'HL'] = 'H*'
 | 
	
		
			
				|  |  | +                    while m:
 | 
	
		
			
				|  |  | +                        if thd.df_day.loc[m, 'HL'] == 'L':
 | 
	
		
			
				|  |  | +                            if x - m > 3:
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'H'
 | 
	
		
			
				|  |  | +                                print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
 | 
	
		
			
				|  |  | +                                # pass
 | 
	
		
			
				|  |  | +                                results.remove(thd.stock)
 | 
	
		
			
				|  |  | +                            # break
 | 
	
		
			
				|  |  | +                        elif (thd.df_day.loc[m, 'HL'] == 'H'):
 | 
	
		
			
				|  |  | +                            if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
 | 
	
		
			
				|  |  | +                                # 前一个为顶,且中间存在不包含 or 更高的顶
 | 
	
		
			
				|  |  | +                                thd.df_day.loc[x, 'HL'] = 'H'
 | 
	
		
			
				|  |  | +                                x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[x, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
 | 
	
		
			
				|  |  | +                                                                           check_date=thd.df_day.loc[m, 'date'],
 | 
	
		
			
				|  |  | +                                                                           SHORT=12, LONG=26, MID=9, unit=fre)
 | 
	
		
			
				|  |  | +                                if x_macd_dif[thd.stock] < m_macd_dif[
 | 
	
		
			
				|  |  | +                                    thd.stock]:
 | 
	
		
			
				|  |  | +                                    # pass
 | 
	
		
			
				|  |  | +                                    print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
 | 
	
		
			
				|  |  | +                                    results.remove(thd.stock)
 | 
	
		
			
				|  |  | +                                break
 | 
	
		
			
				|  |  | +                            break
 | 
	
		
			
				|  |  | +                        m = m - 1
 | 
	
		
			
				|  |  | +                        if m == 0:
 | 
	
		
			
				|  |  | +                            thd.df_day.loc[x, 'HL'] = 'H'
 | 
	
		
			
				|  |  | +                            results.remove(thd.stock)
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    thd.df_day.loc[x, 'HL'] = '-'
 | 
	
		
			
				|  |  | +            # print(thd.df_day[-20:])
 | 
	
		
			
				|  |  | +            # 更新数据库
 | 
	
		
			
				|  |  | +            # thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +start = dt.now()
 | 
	
		
			
				|  |  | +while True:
 | 
	
		
			
				|  |  | +    now_date = dt.now()
 | 
	
		
			
				|  |  | +    date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
 | 
	
		
			
				|  |  | +    date_morning_end = now_date.replace(hour=11, minute=31, second=0)
 | 
	
		
			
				|  |  | +    date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
 | 
	
		
			
				|  |  | +    date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
 | 
	
		
			
				|  |  | +    # print(now_date,date_morning_begin,date_morning_end,date_afternooe_begin,date_afternooe_end)
 | 
	
		
			
				|  |  | +    if date_morning_begin < now_date < date_afternooe_end:
 | 
	
		
			
				|  |  | +    # if True:
 | 
	
		
			
				|  |  | +        for fre in ['1d']:
 | 
	
		
			
				|  |  | +            start = dt.now()
 | 
	
		
			
				|  |  | +            print(fre)
 | 
	
		
			
				|  |  | +            # 连接数据库
 | 
	
		
			
				|  |  | +            db = pymysql.connect(host='localhost',
 | 
	
		
			
				|  |  | +                                 user='root',
 | 
	
		
			
				|  |  | +                                 port=3307,
 | 
	
		
			
				|  |  | +                                 password='r6kEwqWU9!v3',
 | 
	
		
			
				|  |  | +                                 database='hlfx')
 | 
	
		
			
				|  |  | +            cursor = db.cursor()
 | 
	
		
			
				|  |  | +            cursor.execute("show tables like '%%%s%%' " % fre)
 | 
	
		
			
				|  |  | +            table_list = [tuple[0] for tuple in cursor.fetchall()]
 | 
	
		
			
				|  |  | +            print('取得 table_list %s' % fre)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            db_pool = pymysql.connect(host='localhost',
 | 
	
		
			
				|  |  | +                                      user='root',
 | 
	
		
			
				|  |  | +                                      port=3307,
 | 
	
		
			
				|  |  | +                                      password='r6kEwqWU9!v3',
 | 
	
		
			
				|  |  | +                                      database='hlfx_pool')
 | 
	
		
			
				|  |  | +            cursor_pool = db_pool.cursor()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            stk = locals()
 | 
	
		
			
				|  |  | +            thd = threading.local()
 | 
	
		
			
				|  |  | +            # 进程准备
 | 
	
		
			
				|  |  | +            step = 600
 | 
	
		
			
				|  |  | +            thread_list = []
 | 
	
		
			
				|  |  | +            engine_stock = []
 | 
	
		
			
				|  |  | +            engine_hlfx = []
 | 
	
		
			
				|  |  | +            times_engine = 0
 | 
	
		
			
				|  |  | +            engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # 获得hlfx_pool池子
 | 
	
		
			
				|  |  | +            # results = pd.read_sql_query(
 | 
	
		
			
				|  |  | +            #                 'select value from `%s`' % fre, engine_hlfx_pool)
 | 
	
		
			
				|  |  | +            # for i in range(0, len(results)):
 | 
	
		
			
				|  |  | +            #     print(len(results.iloc[i, 0].split(",")))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            results = pd.read_sql_query(
 | 
	
		
			
				|  |  | +                            'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(",")
 | 
	
		
			
				|  |  | +            results_short = []
 | 
	
		
			
				|  |  | +            print('数据库读取', len(results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            df = get_bars(stocks, count=20, unit=fre,
 | 
	
		
			
				|  |  | +                          fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
 | 
	
		
			
				|  |  | +            print(dt.now(), 'get_bars 成功')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            for i in range(0, len(stocks), step):
 | 
	
		
			
				|  |  | +                engine_stock.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
 | 
	
		
			
				|  |  | +                engine_hlfx.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
 | 
	
		
			
				|  |  | +                thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine_stock[times_engine], engine_hlfx[times_engine]))
 | 
	
		
			
				|  |  | +                times_engine = times_engine + 1
 | 
	
		
			
				|  |  | +                thread.start()
 | 
	
		
			
				|  |  | +                thread_list.append(thread)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            for thread in thread_list:
 | 
	
		
			
				|  |  | +                thread.join()
 | 
	
		
			
				|  |  | +            db.close()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
 | 
	
		
			
				|  |  | +            results_list =','.join(set(results))
 | 
	
		
			
				|  |  | +            print(set(results))
 | 
	
		
			
				|  |  | +            sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
 | 
	
		
			
				|  |  | +            cursor_pool.execute(sql)
 | 
	
		
			
				|  |  | +            db_pool.commit()
 | 
	
		
			
				|  |  | +            print(fre, '\n', '做多:', len(set(results)),  set(results))
 | 
	
		
			
				|  |  | +            print('做空', len(set(results_short)), set(results_short))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            end= dt.now()
 | 
	
		
			
				|  |  | +            print('总时长:', (end - start).seconds)
 | 
	
		
			
				|  |  | +    elif now_date>date_afternooe_end:
 | 
	
		
			
				|  |  | +        pass
 | 
	
		
			
				|  |  | +        # print("HLFX_收盘了",now_date)
 | 
	
		
			
				|  |  | +        # break
 |