|
@@ -1,3 +1,5 @@
|
|
|
+import time
|
|
|
+
|
|
|
import os
|
|
|
import traceback
|
|
|
import numpy as np
|
|
@@ -10,19 +12,29 @@ import datetime
|
|
|
import math
|
|
|
from datetime import datetime as dt
|
|
|
import multiprocessing as mp
|
|
|
-from multiprocessing import Pool, Lock, Value
|
|
|
+from multiprocessing import Pool, Lock, Value, freeze_support
|
|
|
+import concurrent.futures
|
|
|
+import functools
|
|
|
+
|
|
|
from backtrader.feeds import PandasData
|
|
|
import platform
|
|
|
import psutil
|
|
|
import logging
|
|
|
|
|
|
-
|
|
|
-
|
|
|
-engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
|
- max_overflow=-1)
|
|
|
lock = Lock()
|
|
|
counter = Value('i', 0)
|
|
|
|
|
|
+
|
|
|
+# engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
|
+ # pool_size=5000, max_overflow=200)
|
|
|
+
|
|
|
+# db_pool = pymysql.connect(host='localhost',
|
|
|
+# user='root',
|
|
|
+# port=3307,
|
|
|
+# password='r6kEwqWU9!v3',
|
|
|
+# database='qmt_stocks_tech')
|
|
|
+
|
|
|
+
|
|
|
class MyPandasData(PandasData):
|
|
|
lines = ('hl', 'dif', 'dea', 'macd', 'rsi_6', 'rsi_12', 'rsi_24',)
|
|
|
params = (('hl', 7),
|
|
@@ -132,47 +144,36 @@ class TestStrategy(bt.Strategy):
|
|
|
# self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
|
|
|
|
|
|
def next(self):
|
|
|
- # print(self.num,self.Volatility)
|
|
|
- # Simply log the closing price of the series from the reference
|
|
|
- # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
|
|
|
- # and (self.sma5[-1] < self.sma10[-1])
|
|
|
- # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3) \
|
|
|
- # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
|
|
|
-
|
|
|
- if len(self) > self.params.num:
|
|
|
- vola = self.params.Volatility / 100
|
|
|
- rate = self.params.rate / 100
|
|
|
- lowest = np.min(self.low.get(size=self.params.num))
|
|
|
- highest = np.max(self.high.get(size=self.params.num))
|
|
|
-
|
|
|
- # > self.sma5[-1]
|
|
|
- # and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
|
|
|
- # (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))) \
|
|
|
- if self.hl[-1] == 2 or self.hl[-1] == 1:
|
|
|
- m = -2
|
|
|
- self.order = self.buy()
|
|
|
- self.pos_price = self.low[-1]
|
|
|
-
|
|
|
- while True:
|
|
|
- if (self.hl[m] == 2 or self.hl[m] == 1) and self.macd[m] > self.macd[-1] \
|
|
|
- and self.dataclose[0] > self.sma5[0] \
|
|
|
- and self.dataclose[-1] > self.dataopen[-1] \
|
|
|
- and (self.sma10[-2] - self.sma5[-2]) < (self.sma10[-1] - self.sma5[-1]) \
|
|
|
- and self.low[-2] < self.sma5[-2] * (1 - rate) \
|
|
|
- and self.sma5[-1] < self.sma10[-1] < self.sma20[-1] < self.sma20[-2] < self.sma20[-3] \
|
|
|
- and lowest * (1 - vola) < self.low[-1] < lowest * (1 + vola):
|
|
|
- self.order = self.buy()
|
|
|
- self.pos_price = self.low[-1]
|
|
|
- break
|
|
|
- m -= 1
|
|
|
- if m + len(self) == 2:
|
|
|
- break
|
|
|
-
|
|
|
- # elif (self.hl[0] == 5 or self.dataclose[0] < self.sma5[0]):
|
|
|
- elif self.dataclose[0] < self.sma5[0] or self.sma5[0] < self.sma5[-1] \
|
|
|
- or self.dataclose[0] < self.pos_price or self.high[0] > self.sma5[0] * (1 + vola):
|
|
|
- self.order = self.close()
|
|
|
- self.pos_price = 0
|
|
|
+ # if len(self) > self.params.num:
|
|
|
+ vola = self.params.Volatility / 100
|
|
|
+ rate = self.params.rate / 100
|
|
|
+ lowest = np.min(self.low.get(size=self.params.num))
|
|
|
+ highest = np.max(self.high.get(size=self.params.num))
|
|
|
+
|
|
|
+ if self.hl[-1] == 2 or self.hl[-1] == 1:
|
|
|
+ m = -2
|
|
|
+ # self.order = self.buy()
|
|
|
+ # self.pos_price = self.low[-1]
|
|
|
+ while True:
|
|
|
+ if (self.hl[m] == 2 or self.hl[m] == 1) and self.macd[m] > self.macd[-1] \
|
|
|
+ and self.dataclose[0] > self.sma5[0] \
|
|
|
+ and self.dataclose[-1] > self.dataopen[-1] \
|
|
|
+ and (self.sma10[-2] - self.sma5[-2]) < (self.sma10[-1] - self.sma5[-1]) \
|
|
|
+ and self.low[-2] < self.sma5[-2] * (1 - rate) \
|
|
|
+ and self.sma5[-1] < self.sma10[-1] < self.sma20[-1] < self.sma20[-2] < self.sma20[-3] \
|
|
|
+ and lowest * (1 - vola) < self.low[-1] < lowest * (1 + vola):
|
|
|
+ self.order = self.buy()
|
|
|
+ self.pos_price = self.low[-1]
|
|
|
+ break
|
|
|
+ m -= 1
|
|
|
+ if m + len(self) == 2:
|
|
|
+ break
|
|
|
+
|
|
|
+ # elif (self.hl[0] == 5 or self.dataclose[0] < self.sma5[0]):
|
|
|
+ elif self.dataclose[0] < self.sma5[0] or self.sma5[0] < self.sma5[-1] \
|
|
|
+ or self.dataclose[0] < self.pos_price or self.high[0] > self.sma5[0] * (1 + vola):
|
|
|
+ self.order = self.close()
|
|
|
+ self.pos_price = 0
|
|
|
|
|
|
def stop(self):
|
|
|
# pass
|
|
@@ -184,11 +185,11 @@ def err_call_back(err):
|
|
|
traceback.format_exc(err)
|
|
|
|
|
|
|
|
|
-def to_df(lt):
|
|
|
+def to_df(df):
|
|
|
print('开始存数据')
|
|
|
- df = pd.DataFrame(list(lt),
|
|
|
- columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利',
|
|
|
- '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损', '盈亏对比'])
|
|
|
+ # df = pd.DataFrame(list(lt),
|
|
|
+ # columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利',
|
|
|
+ # '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损', '盈亏对比'])
|
|
|
df.sort_values(by=['周期', '波动率', 'MA5斜率'], ascending=True, inplace=True)
|
|
|
df = df.reset_index(drop=True)
|
|
|
if platform.node() == 'DanieldeMBP.lan':
|
|
@@ -196,65 +197,91 @@ def to_df(lt):
|
|
|
index=True,
|
|
|
encoding='utf_8_sig', mode='w')
|
|
|
else:
|
|
|
- df.to_csv(f"C:\Daniel\策略\策略穷举底分型_均线缠绕_只买一次{dt.now().strftime('%Y%m%d%H%m%S')}.csv", index=True,
|
|
|
+ df.to_csv(f"C:\策略结果\策略穷举底分型_均线缠绕_只买一次{dt.now().strftime('%Y%m%d%H%m%S')}.csv", index=True,
|
|
|
encoding='utf_8_sig', mode='w')
|
|
|
print(f'结果:, \n, {df}')
|
|
|
|
|
|
|
|
|
-def backtrader(table_list, stock, result, result_change, result_change_fall, num, Volatility, rate, err_list):
|
|
|
- global engine, counter, lock
|
|
|
- conn = engine.connect()
|
|
|
- stk_df = pd.read_sql_table(stock, conn)
|
|
|
- stk_df.time = pd.to_datetime(stk_df.time)
|
|
|
- # stk_df = stk_df[stk_df['HL'] != '-']
|
|
|
+def backtrader(stock, result, result_change, result_change_fall, num, Volatility, rate, err_list):
|
|
|
+ # global engine
|
|
|
+ # global db_pool
|
|
|
+ global lock
|
|
|
+ sttime = dt.now()
|
|
|
+ engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
|
+ pool_size=10, max_overflow=20)
|
|
|
try:
|
|
|
- stk_df['HL'] = stk_df['HL'].map({'L': 1,
|
|
|
- 'LL': 2,
|
|
|
- 'L*': 3,
|
|
|
- 'H': 4,
|
|
|
- 'HH': 5,
|
|
|
- 'H*': 6,
|
|
|
- '-': 7})
|
|
|
- except BaseException:
|
|
|
- print(f'{stock}数据不全,不做测试')
|
|
|
- else:
|
|
|
+ # cursor = db_pool.cursor()
|
|
|
+ # sql_query = f"select * from `{stock}`"
|
|
|
+ # stk_df = pd.read_sql_query(sql_query, engine)
|
|
|
+ conn = engine.connect()
|
|
|
+ # with engine.connect() as conn:
|
|
|
+ stk_df = pd.read_sql_table(stock, conn)
|
|
|
+ stk_df.time = pd.to_datetime(stk_df.time)
|
|
|
conn.close()
|
|
|
+ engine.dispose()
|
|
|
+ # stk_df = stk
|
|
|
+ except BaseException as e:
|
|
|
+ print(f'{stock}读取有问题', e)
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ try:
|
|
|
+ # stk_df = stk_df[stk_df['HL'] != '-']
|
|
|
+ try:
|
|
|
+ stk_df['HL'] = stk_df['HL'].map({'L': 1,
|
|
|
+ 'LL': 2,
|
|
|
+ 'L*': 3,
|
|
|
+ 'H': 4,
|
|
|
+ 'HH': 5,
|
|
|
+ 'H*': 6,
|
|
|
+ '-': 7})
|
|
|
+ except BaseException:
|
|
|
+ print(f'{stock}数据不全,不做测试')
|
|
|
+ finally:
|
|
|
+ # print(f'{stock}读取通过')
|
|
|
+ pass
|
|
|
+
|
|
|
+ try:
|
|
|
if len(stk_df) > 60:
|
|
|
- cerebro = bt.Cerebro()
|
|
|
- cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
|
|
|
- cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
|
|
|
- data = MyPandasData(dataname=stk_df,
|
|
|
- fromdate=datetime.datetime(2017, 1, 1),
|
|
|
- todate=datetime.datetime(2022, 10, 30),
|
|
|
- datetime='time',
|
|
|
- open='open_back',
|
|
|
- close='close_back',
|
|
|
- high='high_back',
|
|
|
- low='low_back',
|
|
|
- volume='volume_back',
|
|
|
- hl='HL',
|
|
|
- dif='dif',
|
|
|
- dea='dea',
|
|
|
- macd='macd',
|
|
|
- rsi_6='rsi_6',
|
|
|
- rsi_12='rsi_12',
|
|
|
- rsi_24='rsi_24',
|
|
|
- )
|
|
|
- # print('取值完成')
|
|
|
- cerebro.adddata(data, name=stock)
|
|
|
- cerebro.broker.setcash(100000.0)
|
|
|
- cerebro.broker.setcommission(0.005)
|
|
|
- cerebro.addanalyzer(bt.analyzers.PyFolio)
|
|
|
- # 策略执行前的资金
|
|
|
- # print('启动资金: %.2f' % cerebro.broker.getvalue())
|
|
|
try:
|
|
|
+ cerebro = bt.Cerebro()
|
|
|
+ cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
|
|
|
+ cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
|
|
|
+ data = MyPandasData(dataname=stk_df,
|
|
|
+ fromdate=datetime.datetime(2017, 1, 1),
|
|
|
+ todate=datetime.datetime(2022, 10, 30),
|
|
|
+ datetime='time',
|
|
|
+ open='open_back',
|
|
|
+ close='close_back',
|
|
|
+ high='high_back',
|
|
|
+ low='low_back',
|
|
|
+ volume='volume_back',
|
|
|
+ hl='HL',
|
|
|
+ dif='dif',
|
|
|
+ dea='dea',
|
|
|
+ macd='macd',
|
|
|
+ rsi_6='rsi_6',
|
|
|
+ rsi_12='rsi_12',
|
|
|
+ rsi_24='rsi_24',
|
|
|
+ )
|
|
|
+ # print('取值完成')
|
|
|
+ cerebro.adddata(data, name=stock)
|
|
|
+ cerebro.broker.setcash(100000.0)
|
|
|
+ cerebro.broker.setcommission(0.005)
|
|
|
+ cerebro.addanalyzer(bt.analyzers.PyFolio)
|
|
|
+ # 策略执行前的资金
|
|
|
+ # print('启动资金: %.2f' % cerebro.broker.getvalue())
|
|
|
+
|
|
|
# 策略执行
|
|
|
cerebro.run()
|
|
|
- except IndexError as e:
|
|
|
+ except BaseException as e:
|
|
|
+ lock.acquire()
|
|
|
err_list.append(stock)
|
|
|
+ lock.release()
|
|
|
# print(f'{num}天波动率为{Volatility}%MA5斜率为{rate}的{stock}错误')
|
|
|
- # print(e)
|
|
|
+ print(stock, 'cerebro错误', e)
|
|
|
else:
|
|
|
+ lock.acquire()
|
|
|
if cerebro.broker.getvalue() > 100000.0:
|
|
|
result_change.append(cerebro.broker.getvalue() - 100000)
|
|
|
result.append(stock)
|
|
@@ -262,18 +289,29 @@ def backtrader(table_list, stock, result, result_change, result_change_fall, num
|
|
|
# print(result)
|
|
|
elif cerebro.broker.getvalue() <= 100000.0:
|
|
|
result_change_fall.append(cerebro.broker.getvalue() - 100000)
|
|
|
- # print('aaaaaaaaaaa')
|
|
|
- # print(result_change_fall)
|
|
|
- # print('最终资金: %.2f' % cerebro.broker.getvalue())
|
|
|
- finally:
|
|
|
- with lock:
|
|
|
- counter.value += 1
|
|
|
- logging.info('执行完成:(%d / %d) 进程号: %d --------------- %s', counter.value, len(table_list), os.getpid(), stock)
|
|
|
-
|
|
|
- # print(f'已计算{counter.value}/{len(table_list)}只股票')
|
|
|
- # print(f'已计算{(len(result) + len(result_change_fall)+len(err_list))}/{len(table_list)}只股票')
|
|
|
- '''
|
|
|
- if len(result) * len(result_change) * len(result_change_fall) != 0:
|
|
|
+ lock.release()
|
|
|
+ else:
|
|
|
+ lock.acquire()
|
|
|
+ err_list.append(stock)
|
|
|
+ lock.release()
|
|
|
+
|
|
|
+ # print('aaaaaaaaaaa')
|
|
|
+ # print(result_change_fall)
|
|
|
+ # print('最终资金: %.2f' % cerebro.broker.getvalue())
|
|
|
+ # finally:
|
|
|
+ # with lock:
|
|
|
+ # counter.value += 1
|
|
|
+ # logging.info('执行完成:(%d / %d) 进程号: %d --------------- %s', counter.value, len(table_list), os.getpid(), stock)
|
|
|
+
|
|
|
+ # print(f'已计算{counter.value}/{len(table_list)}只股票')
|
|
|
+ except BaseException as e:
|
|
|
+ print(f'{stock}backtrader问题', e)
|
|
|
+ finally:
|
|
|
+ print(f'{stock}通过')
|
|
|
+ # print(f'已计算{(len(result) + len(result_change_fall)+len(err_list))}/{len(table_list)}只股票')
|
|
|
+
|
|
|
+
|
|
|
+ if len(result) * len(result_change) * len(result_change_fall) != 0:
|
|
|
print(f'以{num}内最低值波动{Volatility}为支撑、MA5斜率为{rate}%,结果状态为:')
|
|
|
print('正盈利的个股为:', len(result), '成功率为:', len(result) / len(table_list))
|
|
|
print(
|
|
@@ -294,7 +332,7 @@ def backtrader(table_list, stock, result, result_change, result_change_fall, num
|
|
|
print('阿欧', len(result), len(result_change), len(result_change_fall), num, Volatility, rate, err_list)
|
|
|
list_date.append([num, Volatility, rate, 0, len(result) / len(table_list), len(result),
|
|
|
len(result), len(result), len(result), len(result), len(result), len(result), 0])
|
|
|
- '''
|
|
|
+
|
|
|
# list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
# np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
# np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
@@ -306,12 +344,16 @@ def backtrader(table_list, stock, result, result_change, result_change_fall, num
|
|
|
# df = pd.DataFrame(
|
|
|
# columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
|
|
|
# '平均亏损', '最大亏损', '最小亏损'])
|
|
|
+#
|
|
|
if __name__ == '__main__':
|
|
|
+ freeze_support()
|
|
|
logger = mp.log_to_stderr()
|
|
|
logger.setLevel(logging.INFO)
|
|
|
starttime = dt.now()
|
|
|
+
|
|
|
+
|
|
|
print(starttime)
|
|
|
- pus = psutil.Process()
|
|
|
+ # pus = psutil.Process()
|
|
|
|
|
|
fre = '1d'
|
|
|
db = pymysql.connect(host='localhost',
|
|
@@ -322,41 +364,63 @@ if __name__ == '__main__':
|
|
|
cursor = db.cursor()
|
|
|
cursor.execute("show tables like '%%%s%%' " % fre)
|
|
|
table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
+ cursor.close()
|
|
|
+ db.close()
|
|
|
+
|
|
|
# print(table_list)
|
|
|
# table_list = table_list[0:500]
|
|
|
print(f'计算个股数为:{len(table_list)}')
|
|
|
|
|
|
list_date = []
|
|
|
- thread_list = []
|
|
|
- pool = mp.Pool(processes=mp.cpu_count())
|
|
|
- # pool = mp.Pool(processes=8)
|
|
|
+ pddate = pd.DataFrame(columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利',
|
|
|
+ '平均盈利', '最大盈利', '最小盈利', '总亏损', '平均亏损',
|
|
|
+ '最大亏损',
|
|
|
+ '最小亏损', '盈亏对比'])
|
|
|
+
|
|
|
+ engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
|
+ pool_size=10, max_overflow=20)
|
|
|
+
|
|
|
+ stk_df = pd.read_sql_table(table_list[0], engine)
|
|
|
+ engine.dispose()
|
|
|
+ print(stk_df)
|
|
|
+
|
|
|
for num in range(60, 80, 20):
|
|
|
- for Volatility in range(7, 8, 1):
|
|
|
- for rate in range(3, 4, 1):
|
|
|
- # step = math.ceil(len(table_list) / mp.cpu_count())
|
|
|
+ for Volatility in range(7, 12, 1):
|
|
|
+ for rate in range(3, 13, 1):
|
|
|
+ stattime = dt.now().strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ print(stattime)
|
|
|
+ # pool = mp.Pool()
|
|
|
result = mp.Manager().list()
|
|
|
result_change = mp.Manager().list()
|
|
|
result_change_fall = mp.Manager().list()
|
|
|
err_list = mp.Manager().list()
|
|
|
- print(f'{num}天波动率为{Volatility}%MA5斜率为{rate}')
|
|
|
- # for i in range(0, len(table_list), step):
|
|
|
- stattime = dt.now()
|
|
|
+
|
|
|
+ print(os.getpid())
|
|
|
+ print(num, Volatility, rate, result, result_change, result_change_fall, err_list)
|
|
|
+
|
|
|
# 保存AsyncResult对象的列表
|
|
|
async_results = []
|
|
|
- # thd = threading.local()
|
|
|
- # print(i)
|
|
|
- # p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
|
|
|
- # num, Volatility, rate, err_list))
|
|
|
- # thread_list.append(p)
|
|
|
- for stock in table_list:
|
|
|
- async_result = pool.apply_async(func=backtrader,
|
|
|
- args=(table_list, stock, result, result_change, result_change_fall,
|
|
|
- num, Volatility, rate, err_list,),
|
|
|
- error_callback=err_call_back)
|
|
|
- async_results.append(async_result)
|
|
|
- # p.start()
|
|
|
- pool.close()
|
|
|
- pool.join()
|
|
|
+ partial_func_list = []
|
|
|
+
|
|
|
+ m = 0
|
|
|
+ try:
|
|
|
+ pool = mp.Pool(processes=8)
|
|
|
+ for stock in table_list:
|
|
|
+ async_result = pool.apply_async(func=backtrader,
|
|
|
+ args=(
|
|
|
+ stock, result, result_change,
|
|
|
+ result_change_fall,
|
|
|
+ num, Volatility, rate, err_list,),
|
|
|
+ error_callback=err_call_back)
|
|
|
+ m += 1
|
|
|
+ async_results.append(async_result)
|
|
|
+ # p.start()
|
|
|
+ pool.close()
|
|
|
+ time.sleep(1)
|
|
|
+ pool.join()
|
|
|
+ except BaseException as e:
|
|
|
+ print(f'进程池报错{e}')
|
|
|
+ print(f'共有{m}只股票')
|
|
|
|
|
|
# 统计返回为 None 的结果数量
|
|
|
none_count = 0
|
|
@@ -364,17 +428,42 @@ if __name__ == '__main__':
|
|
|
_ = result_async.get() # 获取任务的结果
|
|
|
if _ is None:
|
|
|
none_count += 1
|
|
|
+ print(f'{num}天波动率为{Volatility}%MA5斜率为{rate}')
|
|
|
+ print(f"正确计算的有{none_count},错误的有{len(err_list)},共计算{len(async_results)}只股票")
|
|
|
+ '''
|
|
|
+ list_date = [num, Volatility, rate, len(result), len(result) / len(table_list),
|
|
|
+ np.nansum(result_change),
|
|
|
+ np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
+ np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
+ np.nanmin(result_change_fall), np.nanmax(result_change_fall),
|
|
|
+ len(result_change) / len(result_change_fall)]
|
|
|
+ ld = pd.Series(list_date, index=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利',
|
|
|
+ '平均盈利', '最大盈利', '最小盈利', '总亏损', '平均亏损',
|
|
|
+ '最大亏损', '最小亏损', '盈亏对比'])
|
|
|
+ pddate = pd.concat([pddate, ld.to_frame().T], ignore_index=True)
|
|
|
print(f'计算总数={len(result) + len(result_change_fall)}\n计数为:{none_count}')
|
|
|
- list_date.append(
|
|
|
- [num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
- np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
- np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
- np.nanmin(result_change_fall), np.nanmax(result_change_fall),
|
|
|
- len(result_change) / len(result_change_fall)])
|
|
|
- print(list_date)
|
|
|
|
|
|
- # to_df(list_date)
|
|
|
+ print(pddate)
|
|
|
+ to_df(pddate)
|
|
|
+
|
|
|
+ # time.sleep(1)
|
|
|
+ '''
|
|
|
|
|
|
+ # to_df(list_date)
|
|
|
+ print(pddate)
|
|
|
+ to_df(pddate)
|
|
|
edtime = dt.now()
|
|
|
print('总耗时:', edtime - starttime)
|
|
|
+
|
|
|
+ # with concurrent.futures.ProcessPoolExecutor() as executor:
|
|
|
+ # for stock_code in table_list:
|
|
|
+ # partial_func = functools.partial(backtrader, table_list, stock_code, result, result_change,
|
|
|
+ # result_change_fall, num, Volatility, rate, err_list)
|
|
|
+ # partial_func_list.append(partial_func)
|
|
|
+ # executor.submit(partial_func)
|
|
|
+ # executor.submit(backtrader, table_list, stock_code, result, result_change,
|
|
|
+ # result_change_fall, num, Volatility, rate, err_list,)
|
|
|
+
|
|
|
+ # print(pool)
|
|
|
+
|
|
|
# df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)
|