|  | @@ -194,7 +194,7 @@ def tech_anal(stocks, hlfx_pool):
 | 
											
												
													
														|  |      engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
 |  |      engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
 | 
											
												
													
														|  |      m = 0
 |  |      m = 0
 | 
											
												
													
														|  |      print(f'{dt.now()}开始循环计算! MyPid is {os.getpid()}')
 |  |      print(f'{dt.now()}开始循环计算! MyPid is {os.getpid()}')
 | 
											
												
													
														|  | -    for stock in stocks[0:1]:
 |  | 
 | 
											
												
													
														|  | 
 |  | +    for stock in stocks:
 | 
											
												
													
														|  |          try:
 |  |          try:
 | 
											
												
													
														|  |              df = pd.read_sql_table('%s_1d' % stock, con=engine)
 |  |              df = pd.read_sql_table('%s_1d' % stock, con=engine)
 | 
											
												
													
														|  |          except BaseException:
 |  |          except BaseException:
 | 
											
										
											
												
													
														|  | @@ -241,7 +241,7 @@ if __name__ == '__main__':
 | 
											
												
													
														|  |  
 |  |  
 | 
											
												
													
														|  |      pool = mp.Pool(processes=mp.cpu_count())
 |  |      pool = mp.Pool(processes=mp.cpu_count())
 | 
											
												
													
														|  |      step = math.ceil(len(stocks) / mp.cpu_count())
 |  |      step = math.ceil(len(stocks) / mp.cpu_count())
 | 
											
												
													
														|  | -    step = 10000
 |  | 
 | 
											
												
													
														|  | 
 |  | +    # step = 10000
 | 
											
												
													
														|  |      for i in range(0, len(stocks), step):
 |  |      for i in range(0, len(stocks), step):
 | 
											
												
													
														|  |          pool.apply_async(func=tech_anal, args=(stocks[i:i + step], hlfx_pool,), error_callback=err_call_back)
 |  |          pool.apply_async(func=tech_anal, args=(stocks[i:i + step], hlfx_pool,), error_callback=err_call_back)
 | 
											
												
													
														|  |      pool.close()
 |  |      pool.close()
 |