|
@@ -130,20 +130,6 @@ class TestStrategy(bt.Strategy):
|
|
|
|
|
|
def stop(self):
|
|
|
# pass
|
|
|
- print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
|
|
|
- print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
|
|
|
- print(
|
|
|
- f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
|
|
|
- print(
|
|
|
- f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
|
|
|
- endtime = dt.now()
|
|
|
- df.loc[len(df)] = [num, Volatility, len(result), len(result) / len(table_list), np.sum(result_change),
|
|
|
- np.mean(result_change), np.max(result_change), np.min(result_change),
|
|
|
- np.sum(result_change_fall), np.mean(result_change_fall),
|
|
|
- np.min(result_change_fall), np.max(result_change_fall)]
|
|
|
- print(df)
|
|
|
- print('每轮耗时:', endtime - stattime)
|
|
|
- df.to_csv(r'D:\Daniel\策略\策略穷举.csv', index=True)
|
|
|
self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
|
|
|
|
|
|
|
|
@@ -230,18 +216,20 @@ if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
sttime = dt.now()
|
|
|
- thread_list = []
|
|
|
- for num in range(30, 70, 10):
|
|
|
+
|
|
|
+ for num in range(60, 140, 20):
|
|
|
for Volatility in range(8, 10, 1):
|
|
|
for rate in range(7, 10, 1):
|
|
|
step = math.ceil(len(table_list) / mp.cpu_count())
|
|
|
-
|
|
|
+ thread_list = []
|
|
|
result = mp.Manager().list()
|
|
|
result_change = mp.Manager().list()
|
|
|
result_change_fall = mp.Manager().list()
|
|
|
err_list = mp.Manager().list()
|
|
|
print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
|
|
|
for i in range(0, len(table_list), step):
|
|
|
+
|
|
|
+
|
|
|
stattime = dt.now()
|
|
|
# thd = threading.local()
|
|
|
# print(i)
|
|
@@ -251,10 +239,24 @@ if __name__ == '__main__':
|
|
|
# p.start()
|
|
|
# p.join()
|
|
|
# print(thread_list)
|
|
|
- for thread in thread_list:
|
|
|
- thread.start()
|
|
|
- for thread in thread_list:
|
|
|
- thread.join()
|
|
|
+ for thread in thread_list:
|
|
|
+ thread.start()
|
|
|
+ for thread in thread_list:
|
|
|
+ thread.join()
|
|
|
+
|
|
|
+ print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
|
|
|
+ print('正盈利的个股为:', len(result_change), '成功率为:', len(result)/len(table_list))
|
|
|
+ print(f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
|
|
|
+ print(
|
|
|
+ f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
|
|
|
+ endtime = dt.now()
|
|
|
+ df.loc[len(df)] = [num, Volatility, len(result), len(result)/len(table_list), np.sum(result_change),
|
|
|
+ np.mean(result_change), np.max(result_change), np.min(result_change),
|
|
|
+ np.sum(result_change_fall), np.mean(result_change_fall),
|
|
|
+ np.min(result_change_fall), np.max(result_change_fall)]
|
|
|
+ print(df)
|
|
|
+ print('每轮耗时:', endtime-stattime)
|
|
|
+ df.to_csv(r'D:\Daniel\策略\策略穷举.csv', index=True)
|
|
|
edtime = dt.now()
|
|
|
print('总耗时:', edtime - sttime)
|
|
|
# df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)
|