|
@@ -4,7 +4,7 @@ import numpy as np
|
|
|
import os
|
|
|
import pandas as pd
|
|
|
import time
|
|
|
-from sqlalchemy import create_engine
|
|
|
+from sqlalchemy import create_engine, text
|
|
|
from jqdatasdk import *
|
|
|
import pymysql
|
|
|
import multiprocessing as mp
|
|
@@ -222,13 +222,14 @@ def get_hlfx(data):
|
|
|
def tech_anal(stocks, hlfx_pool, hlfx_pool_daily, err_list):
|
|
|
print(f'{dt.now()}开始循环计算! MyPid is {os.getpid()},池子长度为{len(stocks)}')
|
|
|
|
|
|
- engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
|
|
|
+ engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
|
+ pool_recycle=60, max_overflow=-1)
|
|
|
m = 0
|
|
|
|
|
|
for stock in stocks:
|
|
|
# print(stock)
|
|
|
try:
|
|
|
- df = pd.read_sql_table('%s_1d' % stock, con=engine)
|
|
|
+ df = pd.read_sql_table('%s_1d' % stock, con=engine.connect())
|
|
|
df.dropna(axis=0, how='any')
|
|
|
except BaseException:
|
|
|
print(f'{stock}读取有问题')
|
|
@@ -268,6 +269,7 @@ def tech_anal(stocks, hlfx_pool, hlfx_pool_daily, err_list):
|
|
|
hlfx_pool.append(stock)
|
|
|
hlfx_pool_daily.append(stock)
|
|
|
|
|
|
+
|
|
|
print(f'Pid:{os.getpid()}已经完工了,应处理{len(stocks)},共计算{m}支个股')
|
|
|
|
|
|
|
|
@@ -285,11 +287,11 @@ def ind():
|
|
|
hlfx_pool = mp.Manager().list()
|
|
|
hlfx_pool_daily = mp.Manager().list()
|
|
|
hlfx_pool.extend(pd.read_sql_query(
|
|
|
- 'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(","))
|
|
|
+ text("select value from %s" % fre), engine_hlfx_pool.connect()).iloc[-1, 0].split(","))
|
|
|
|
|
|
- # pool = mp.Pool(processes=int(mp.cpu_count()/2))
|
|
|
+ pool = mp.Pool(processes=int(mp.cpu_count()))
|
|
|
step = math.ceil(len(stocks) / mp.cpu_count())
|
|
|
- pool = mp.Pool(processes=18)
|
|
|
+ # pool = mp.Pool(processes=18)
|
|
|
# step = math.ceil(len(stocks) / 12)
|
|
|
# step = 10000
|
|
|
x = 1
|