|
@@ -10,6 +10,7 @@ import math
|
|
|
from datetime import datetime as dt
|
|
|
import multiprocessing as mp
|
|
|
from backtrader.feeds import PandasData
|
|
|
+from numba import jit, cuda, njit
|
|
|
|
|
|
|
|
|
# import multiprocessing
|
|
@@ -36,6 +37,7 @@ class MyPandasData(PandasData):
|
|
|
'''
|
|
|
|
|
|
|
|
|
+
|
|
|
class TestStrategy(bt.Strategy):
|
|
|
params = (
|
|
|
("num", 3),
|
|
@@ -48,7 +50,10 @@ class TestStrategy(bt.Strategy):
|
|
|
dt = dt or self.datas[0].datetime.date(0)
|
|
|
# print('%s, %s' % (dt.isoformat(), txt))
|
|
|
|
|
|
+
|
|
|
def __init__(self):
|
|
|
+ print('__init__', dt.now())
|
|
|
+ print(f'{self.params.num}天波动率为{self.params.Volatility}%乖离率为{self.params.rate}', 'myPID is ', os.getpid())
|
|
|
# self.num = num
|
|
|
# self.Volatility = Volatility/100
|
|
|
# Keep a reference to the "close" line in the data[0] dataseries
|
|
@@ -67,6 +72,11 @@ class TestStrategy(bt.Strategy):
|
|
|
self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
|
|
|
self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
|
|
|
self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
|
|
|
+ self.yx = self.dataclose[0] > self.dataopen[0]
|
|
|
+ self.lowest = btind.Lowest(self.params.num)
|
|
|
+ self.highest = btind.Highest(self.params.num)
|
|
|
+ self.vola = self.params.Volatility / 100
|
|
|
+ self.rate = self.params.rate / 100
|
|
|
|
|
|
def notify_order(self, order):
|
|
|
"""
|
|
@@ -107,6 +117,7 @@ class TestStrategy(bt.Strategy):
|
|
|
# 显示交易的毛利率和净利润
|
|
|
# self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
|
|
|
|
|
|
+ @njit
|
|
|
def next(self):
|
|
|
# print(self.num,self.Volatility)
|
|
|
# Simply log the closing price of the series from the reference
|
|
@@ -115,22 +126,19 @@ class TestStrategy(bt.Strategy):
|
|
|
# and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3) \
|
|
|
# and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
|
|
|
if len(self) > self.params.num:
|
|
|
- lowest = np.min(self.low.get(size=self.params.num))
|
|
|
- highest = np.max(self.high.get(size=self.params.num))
|
|
|
- vola = self.params.Volatility / 100
|
|
|
- rate = self.params.rate / 100
|
|
|
+
|
|
|
# print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
|
|
|
- if (self.dataclose[0] > self.dataopen[0]) \
|
|
|
- and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
|
|
|
- (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))) \
|
|
|
+ if self.yx \
|
|
|
+ and (((self.lowest[0] * (1 - self.vola)) < self.low[-2] < (self.lowest[0] * (1 + self.vola))) or (
|
|
|
+ (self.lowest[0] * (1 - self.vola)) < self.low[-1] < (self.lowest[0] * (1 + self.vola)))) \
|
|
|
and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
|
|
|
and (not self.position) and (self.sma5[0] > self.sma10[0]):
|
|
|
# self.log('BUY CREATE, %.2f' % self.dataclose[0])
|
|
|
self.order = self.buy()
|
|
|
elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0] \
|
|
|
- or (self.dataclose[0] > (self.sma5[0] * (1 + rate))) or \
|
|
|
- (((highest * (1 - vola)) < self.high[-2] < (highest * (1 + vola))) or (
|
|
|
- (highest * (1 - vola)) < self.high[-1] < (highest * (1 + vola)))):
|
|
|
+ or (self.dataclose[0] > (self.sma5[0] * (1 + self.rate))) or \
|
|
|
+ (((self.highest[0] * (1 - self.vola)) < self.high[-2] < (self.highest[0] * (1 + self.vola))) or (
|
|
|
+ (self.highest[0] * (1 - self.vola)) < self.high[-1] < (self.highest[0] * (1 + self.vola)))):
|
|
|
self.order = self.close()
|
|
|
# self.log('Close, %.2f' % self.dataclose[0])
|
|
|
|
|
@@ -152,79 +160,86 @@ def to_df(lt):
|
|
|
print(df)
|
|
|
|
|
|
|
|
|
-def backtrader(list_date, table_list, result, result_change, result_change_fall, num, Volatility, rate, err_list):
|
|
|
- print(f'{num}天波动率为{Volatility}%乖离率为{rate}', 'myPID is ', os.getpid())
|
|
|
+def backtrader(list_date, table_list, result, result_change, result_change_fall, err_list):
|
|
|
sttime = dt.now()
|
|
|
engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks?charset=utf8')
|
|
|
+
|
|
|
+ cerebro = bt.Cerebro()
|
|
|
+ # cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
|
|
|
+ cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
|
|
|
+
|
|
|
+ cerebro.broker.setcash(100000.0)
|
|
|
+ cerebro.broker.setcommission(0.005)
|
|
|
+
|
|
|
for stock in table_list:
|
|
|
# print(stock)
|
|
|
stk_df = pd.read_sql_table(stock, engine)
|
|
|
stk_df.time = pd.to_datetime(stk_df.time)
|
|
|
- if len(stk_df) > 60:
|
|
|
- cerebro = bt.Cerebro()
|
|
|
- cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
|
|
|
- cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
|
|
|
- data = MyPandasData(dataname=stk_df,
|
|
|
- fromdate=datetime.datetime(2010, 1, 1),
|
|
|
- todate=datetime.datetime(2022, 10, 30),
|
|
|
- datetime='time',
|
|
|
- open='open',
|
|
|
- close='close',
|
|
|
- high='high',
|
|
|
- low='low',
|
|
|
- volume='volume',
|
|
|
- # change_pct='change_pct',
|
|
|
- # net_amount_main='net_amount_main',
|
|
|
- # net_pct_main='net_pct_main',
|
|
|
- # net_amount_xl='net_amount_xl',
|
|
|
- # net_pct_xl='net_pct_xl',
|
|
|
- # net_amount_l='net_amount_l',
|
|
|
- # net_pct_l='net_pct_l',
|
|
|
- # net_amount_m='net_amount_m',
|
|
|
- # net_pct_m='net_pct_m',
|
|
|
- # net_amount_s='net_amount_s',
|
|
|
- # net_pct_s='net_pct_s',
|
|
|
- )
|
|
|
- # print('取值完成')
|
|
|
- cerebro.adddata(data, name=stock)
|
|
|
- cerebro.broker.setcash(100000.0)
|
|
|
- cerebro.broker.setcommission(0.005)
|
|
|
- cerebro.addanalyzer(bt.analyzers.PyFolio)
|
|
|
- # 策略执行前的资金
|
|
|
- # print('启动资金: %.2f' % cerebro.broker.getvalue())
|
|
|
- try:
|
|
|
- # 策略执行
|
|
|
- cerebro.run()
|
|
|
- except IndexError:
|
|
|
- err_list.append(stock)
|
|
|
- else:
|
|
|
- if cerebro.broker.getvalue() > 100000.0:
|
|
|
- result_change.append((cerebro.broker.getvalue() / 10000 - 1))
|
|
|
- result.append(stock)
|
|
|
- # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
|
|
|
- # print(result)
|
|
|
- else:
|
|
|
- result_change_fall.append((1 - cerebro.broker.getvalue() / 10000))
|
|
|
- # print('aaaaaaaaaaa')
|
|
|
- # print(result_change_fall)
|
|
|
-
|
|
|
- if len(result) * len(result_change) * len(result_change_fall) != 0:
|
|
|
- print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
|
|
|
- print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
|
|
|
- print(
|
|
|
- f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
|
|
|
- print(
|
|
|
- f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
|
|
|
-
|
|
|
- list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
- np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
- np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
- np.nanmin(result_change_fall), np.nanmax(result_change_fall)])
|
|
|
- to_df(list_date)
|
|
|
- endtime = dt.now()
|
|
|
- print(f'{num}天波动率为{Volatility}%乖离率为{rate},myPID is {os.getpid()}.本轮耗时为{endtime - sttime}')
|
|
|
+ data = MyPandasData(dataname=stk_df,
|
|
|
+ fromdate=datetime.datetime(2010, 1, 1),
|
|
|
+ todate=datetime.datetime(2022, 12, 31),
|
|
|
+ datetime='time',
|
|
|
+ open='open',
|
|
|
+ close='close',
|
|
|
+ high='high',
|
|
|
+ low='low',
|
|
|
+ volume='volume',
|
|
|
+ # change_pct='change_pct',
|
|
|
+ # net_amount_main='net_amount_main',
|
|
|
+ # net_pct_main='net_pct_main',
|
|
|
+ # net_amount_xl='net_amount_xl',
|
|
|
+ # net_pct_xl='net_pct_xl',
|
|
|
+ # net_amount_l='net_amount_l',
|
|
|
+ # net_pct_l='net_pct_l',
|
|
|
+ # net_amount_m='net_amount_m',
|
|
|
+ # net_pct_m='net_pct_m',
|
|
|
+ # net_amount_s='net_amount_s',
|
|
|
+ # net_pct_s='net_pct_s',
|
|
|
+ )
|
|
|
+
|
|
|
+ cerebro.adddata(data, name=stock)
|
|
|
+
|
|
|
+ print('取值完成', dt.now())
|
|
|
+ cerebro.optstrategy(TestStrategy, num=range(60, 80, 20), Volatility=range(3, 7), rate=range(5, 12))
|
|
|
+ print('最优参定义', dt.now())
|
|
|
+
|
|
|
+ cerebro.addanalyzer(bt.analyzers.PyFolio)
|
|
|
+ # 策略执行前的资金
|
|
|
+ # print('启动资金: %.2f' % cerebro.broker.getvalue())
|
|
|
+ try:
|
|
|
+ # 策略执行
|
|
|
+ print('开始执行', dt.now())
|
|
|
+ cerebro.run(maxcpus=None)
|
|
|
+ except IndexError:
|
|
|
+ err_list.append(stock)
|
|
|
else:
|
|
|
- print(result, result_change, result_change_fall, num, Volatility, rate, err_list)
|
|
|
+ if cerebro.broker.getvalue() > 100000.0:
|
|
|
+ result_change.append((cerebro.broker.getvalue() / 10000 - 1))
|
|
|
+ result.append(stock)
|
|
|
+ # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
|
|
|
+ # print(result)
|
|
|
+ else:
|
|
|
+ result_change_fall.append((1 - cerebro.broker.getvalue() / 10000))
|
|
|
+ # print('aaaaaaaaaaa')
|
|
|
+ # print(result_change_fall)
|
|
|
+
|
|
|
+ # if len(result) * len(result_change) * len(result_change_fall) != 0:
|
|
|
+ # print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
|
|
|
+ # print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
|
|
|
+ # print(
|
|
|
+ # f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
|
|
|
+ # print(
|
|
|
+ # f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
|
|
|
+ #
|
|
|
+ # list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
+ # np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
+ # np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
+ # np.nanmin(result_change_fall), np.nanmax(result_change_fall)])
|
|
|
+ # to_df(list_date)
|
|
|
+ # endtime = dt.now()
|
|
|
+ # print(f'{num}天波动率为{Volatility}%乖离率为{rate},myPID is {os.getpid()}.本轮耗时为{endtime - sttime}')
|
|
|
+ # else:
|
|
|
+ # print(result, result_change, result_change_fall, num, Volatility, rate, err_list)
|
|
|
# cerebro.plot()
|
|
|
|
|
|
|
|
@@ -254,25 +269,28 @@ if __name__ == '__main__':
|
|
|
list_date = mp.Manager().list()
|
|
|
thread_list = []
|
|
|
pool = mp.Pool(processes=mp.cpu_count())
|
|
|
- for num in range(60, 100, 20):
|
|
|
- for Volatility in range(3, 7, 1):
|
|
|
- for rate in range(7, 9, 1):
|
|
|
- step = math.ceil(len(table_list) / mp.cpu_count())
|
|
|
- result = []
|
|
|
- result_change = []
|
|
|
- result_change_fall = []
|
|
|
- err_list = []
|
|
|
- print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
|
|
|
+ # for num in range(60, 100, 20):
|
|
|
+ # for Volatility in range(3, 7, 1):
|
|
|
+ # for rate in range(7, 9, 1):
|
|
|
+ step = math.ceil(len(table_list) / mp.cpu_count())
|
|
|
+ result = []
|
|
|
+ result_change = []
|
|
|
+ result_change_fall = []
|
|
|
+ err_list = []
|
|
|
+ # print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
|
|
|
+ backtrader(list_date, table_list, result, result_change, result_change_fall,
|
|
|
+ err_list)
|
|
|
# for i in range(0, len(table_list), step):
|
|
|
- stattime = dt.now()
|
|
|
+ stattime = dt.now()
|
|
|
+ print(stattime)
|
|
|
# thd = threading.local()
|
|
|
# print(i)
|
|
|
# p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
|
|
|
# num, Volatility, rate, err_list))
|
|
|
# thread_list.append(p)
|
|
|
- pool.apply_async(func=backtrader,
|
|
|
- args=(list_date, table_list, result, result_change, result_change_fall,
|
|
|
- num, Volatility, rate, err_list,), error_callback=err_call_back)
|
|
|
+ # pool.apply_async(func=backtrader,
|
|
|
+ # args=(list_date, table_list, result, result_change, result_change_fall,
|
|
|
+ # num, Volatility, rate, err_list,), error_callback=err_call_back)
|
|
|
# p.start()
|
|
|
# p.join()
|
|
|
# print(thread_list)
|