|
@@ -15,6 +15,7 @@ import os
|
|
import traceback
|
|
import traceback
|
|
from apscheduler.schedulers.blocking import BlockingScheduler
|
|
from apscheduler.schedulers.blocking import BlockingScheduler
|
|
import psutil
|
|
import psutil
|
|
|
|
+import random
|
|
|
|
|
|
pd.set_option('display.max_columns', None) # 设置显示最大行
|
|
pd.set_option('display.max_columns', None) # 设置显示最大行
|
|
|
|
|
|
@@ -223,9 +224,9 @@ def tech_anal(stocks, hlfx_pool, hlfx_pool_daily, err_list):
|
|
|
|
|
|
for stock in stocks:
|
|
for stock in stocks:
|
|
engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_whole?charset=utf8',
|
|
engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_whole?charset=utf8',
|
|
- pool_size=1, pool_recycle=7200, max_overflow=1000, pool_timeout=60)
|
|
|
|
|
|
+ )
|
|
engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
|
|
- pool_size=1, pool_recycle=3600, max_overflow=1000, pool_timeout=60)
|
|
|
|
|
|
+ )
|
|
# print(stock)
|
|
# print(stock)
|
|
try:
|
|
try:
|
|
df = pd.read_sql_table('%s_1d' % stock, con=engine.connect())
|
|
df = pd.read_sql_table('%s_1d' % stock, con=engine.connect())
|
|
@@ -280,21 +281,24 @@ def ind():
|
|
|
|
|
|
stocks = xtdata.get_stock_list_in_sector('沪深A股')
|
|
stocks = xtdata.get_stock_list_in_sector('沪深A股')
|
|
print(len(stocks))
|
|
print(len(stocks))
|
|
- stocks.sort()
|
|
|
|
|
|
+ # stocks.sort()
|
|
|
|
+ random.shuffle(stocks)
|
|
|
|
+
|
|
|
|
|
|
err_list = mp.Manager().list()
|
|
err_list = mp.Manager().list()
|
|
fre = '1d'
|
|
fre = '1d'
|
|
engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8',
|
|
engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8',
|
|
- pool_size=1, pool_recycle=3600, max_overflow=1000, pool_timeout=60)
|
|
|
|
|
|
+ )
|
|
hlfx_pool = mp.Manager().list()
|
|
hlfx_pool = mp.Manager().list()
|
|
hlfx_pool_daily = mp.Manager().list()
|
|
hlfx_pool_daily = mp.Manager().list()
|
|
hlfx_pool.extend(pd.read_sql_query(
|
|
hlfx_pool.extend(pd.read_sql_query(
|
|
text("select value from %s" % fre), engine_hlfx_pool.connect()).iloc[-1, 0].split(","))
|
|
text("select value from %s" % fre), engine_hlfx_pool.connect()).iloc[-1, 0].split(","))
|
|
|
|
+ engine_hlfx_pool.dispose()
|
|
|
|
|
|
pool = mp.Pool(processes=int(mp.cpu_count()))
|
|
pool = mp.Pool(processes=int(mp.cpu_count()))
|
|
step = math.ceil(len(stocks) / mp.cpu_count())
|
|
step = math.ceil(len(stocks) / mp.cpu_count())
|
|
- # pool = mp.Pool(processes=16)
|
|
|
|
- # step = math.ceil(len(stocks) / 16)
|
|
|
|
|
|
+ # pool = mp.Pool(processes=18)
|
|
|
|
+ # step = math.ceil(len(stocks) / 18)
|
|
# step = 10000
|
|
# step = 10000
|
|
# tech_anal(stocks, hlfx_pool)
|
|
# tech_anal(stocks, hlfx_pool)
|
|
for i in range(0, len(stocks), step):
|
|
for i in range(0, len(stocks), step):
|
|
@@ -303,7 +307,7 @@ def ind():
|
|
time.sleep(5)
|
|
time.sleep(5)
|
|
pool.close()
|
|
pool.close()
|
|
pool.join()
|
|
pool.join()
|
|
- engine_hlfx_pool.dispose()
|
|
|
|
|
|
+
|
|
|
|
|
|
print(f'当日信号:{len(hlfx_pool_daily)},持续检测为:{len(hlfx_pool)}')
|
|
print(f'当日信号:{len(hlfx_pool_daily)},持续检测为:{len(hlfx_pool)}')
|
|
print(len(err_list), err_list)
|
|
print(len(err_list), err_list)
|