|
@@ -19,85 +19,96 @@ fre = '1d'
|
|
|
cursor = db.cursor()
|
|
|
# cursor.execute("select table_name from information_schema.tables where table_schema='qbh_hlfx_backup' and table_name like {}".format('\'%{}\''.format(fre)))
|
|
|
cursor.execute('show tables like {}'.format('\'%{}\''.format(fre)))
|
|
|
-table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
+# table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
|
|
|
# print(table_list)
|
|
|
stk = threading.local()
|
|
|
-engine = locals()
|
|
|
-engine_tosql = locals()
|
|
|
+
|
|
|
|
|
|
|
|
|
# 主程序
|
|
|
# 找顶底(hdx lfx)分型
|
|
|
-def hlfx(table_list, engine, engine_tosql):
|
|
|
+def hlfx(table_list, engine, tosql):
|
|
|
for table in table_list:
|
|
|
# stk.fxdf = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
|
|
|
- stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from %s' % table, engine)
|
|
|
- for i in stk.df_day.index:
|
|
|
- m = i - 1
|
|
|
- if i <= 3:
|
|
|
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
- stk.df_day.loc[i, 'HL'] = '-'
|
|
|
- # 底
|
|
|
- elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])):
|
|
|
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
|
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
- stk.df_day.loc[i, 'HL'] = 'L*'
|
|
|
- while m:
|
|
|
- if m == 1:
|
|
|
- stk.df_day.loc[i, 'HL'] = 'l'
|
|
|
- elif stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h':
|
|
|
- if(i-m) > 3:
|
|
|
- stk.df_day.loc[i, 'HL'] = 'L'
|
|
|
- break
|
|
|
- elif (stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l'):
|
|
|
- if stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']:
|
|
|
- # 前一个为顶,且中间存在不包含 or 更低的底
|
|
|
- stk.df_day.loc[i, 'HL'] = 'L'
|
|
|
- break
|
|
|
- else:
|
|
|
- break
|
|
|
- m = m-1
|
|
|
-
|
|
|
- # 顶
|
|
|
- elif ((stk.df_day.loc[i,'high']<stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']<stk.df_day.loc[i-1,'high'])):
|
|
|
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
|
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
- stk.df_day.loc[i, 'HL'] = 'H*'
|
|
|
- while m:
|
|
|
- if m == 1:
|
|
|
- stk.df_day.loc[i, 'HL'] = 'h'
|
|
|
- elif stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l':
|
|
|
- if i-m > 3:
|
|
|
- stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
- stk.df_day.loc[i, 9] = stk.df_day.loc[i, 'close'] - stk.df_day.loc[m, 'close']
|
|
|
- break
|
|
|
- elif (stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h'):
|
|
|
- if stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']:
|
|
|
- # 前一个为底,且中间存在不包含 or 更高的顶
|
|
|
- stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
- break
|
|
|
- break
|
|
|
- m = m-1
|
|
|
- else:
|
|
|
- stk.df_day.loc[i, 'HL'] = '-'
|
|
|
+ # stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from %s' % table, engine)
|
|
|
+ print(engine)
|
|
|
+ print(tosql)
|
|
|
+ # stk.df_day.to_sql(name='%s' % table, con=tosql, index=True, if_exists='replace')
|
|
|
+ # with tosql.connect() as con_backup:
|
|
|
+ # con_backup.execute('ALTER TABLE %s ADD PRIMARY KEY (`date`);' % table)
|
|
|
+ # for i in stk.df_day.index:
|
|
|
+ # m = i - 1
|
|
|
+ # if i <= 3:
|
|
|
+ # # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
+ # stk.df_day.loc[i, 'HL'] = '-'
|
|
|
+ # # 底
|
|
|
+ # elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])):
|
|
|
+ # # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
|
+ # # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'L*'
|
|
|
+ # while m:
|
|
|
+ # if m == 1:
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'l'
|
|
|
+ # elif stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h':
|
|
|
+ # if(i-m) > 3:
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'L'
|
|
|
+ # break
|
|
|
+ # elif (stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l'):
|
|
|
+ # if stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']:
|
|
|
+ # # 前一个为顶,且中间存在不包含 or 更低的底
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'L'
|
|
|
+ # break
|
|
|
+ # else:
|
|
|
+ # break
|
|
|
+ # m = m-1
|
|
|
+ #
|
|
|
+ # # 顶
|
|
|
+ # elif ((stk.df_day.loc[i,'high']<stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']<stk.df_day.loc[i-1,'high'])):
|
|
|
+ # # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
|
|
|
+ # # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'H*'
|
|
|
+ # while m:
|
|
|
+ # if m == 1:
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'h'
|
|
|
+ # elif stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l':
|
|
|
+ # if i-m > 3:
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
+ # stk.df_day.loc[i, 9] = stk.df_day.loc[i, 'close'] - stk.df_day.loc[m, 'close']
|
|
|
+ # break
|
|
|
+ # elif (stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h'):
|
|
|
+ # if stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']:
|
|
|
+ # # 前一个为底,且中间存在不包含 or 更高的顶
|
|
|
+ # stk.df_day.loc[i, 'HL'] = 'H'
|
|
|
+ # break
|
|
|
+ # break
|
|
|
+ # m = m-1
|
|
|
+ # else:
|
|
|
+ # stk.df_day.loc[i, 'HL'] = '-'
|
|
|
# stk.df_day.to_sql('%s' % table, con=engine, index=True, if_exists='replace', chunksize=20000)
|
|
|
# print(table, '\n', stk.df_day)
|
|
|
- stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx2/hlfx%s.csv' % table)
|
|
|
- stk.df_day.to_sql('%s' % table, con=engine_tosql, index=True, if_exists='replace')
|
|
|
- with engine_tosql.connect() as con_backup:
|
|
|
- con_backup.execute('ALTER TABLE %s ADD PRIMARY KEY (`date`);' % table)
|
|
|
+ # stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx2/hlfx%s.csv' % table)
|
|
|
+ # stk.df_day.to_sql(name='%s' % table, con=tosql, index=True, if_exists='replace')
|
|
|
+ # with tosql.connect() as con_backup:
|
|
|
+ # con_backup.execute('ALTER TABLE %s ADD PRIMARY KEY (`date`);' % table)
|
|
|
|
|
|
-# table_list = ['stk002237_1d','stk000002_1d']
|
|
|
+table_list = ['stk002237_1d','stk000004_1d']
|
|
|
# engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')
|
|
|
-# hlfx(table_list, engine)
|
|
|
+# tosql = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/bb22?charset=utf8')
|
|
|
+# hlfx(table_list, engine, tosql)
|
|
|
|
|
|
step = 50
|
|
|
thread_list = []
|
|
|
+engine = []
|
|
|
+tosql = []
|
|
|
for i in range(0, len(table_list), step):
|
|
|
- engine_tosql[i] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_backup?charset=utf8')
|
|
|
- engine[i] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')
|
|
|
- threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[i], engine_tosql[i])).start()
|
|
|
+ engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8'))
|
|
|
+ tosql.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/bb22?charset=utf8'))
|
|
|
+ threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[i], tosql[i],)).start()
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
|
|
|
|
|
|
|