|  | @@ -29,44 +29,42 @@ import threading
 | 
	
		
			
				|  |  |  engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
 | 
	
		
			
				|  |  | -stocks =stocks[0:40]
 | 
	
		
			
				|  |  | +# stocks =stocks[0:40]
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  thd = threading.local()
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  def qbh(stocks, engine, engine_backup):
 | 
	
		
			
				|  |  |      for stock in stocks:
 | 
	
		
			
				|  |  | -        print(engine)
 | 
	
		
			
				|  |  | -        print(engine_backup)
 | 
	
		
			
				|  |  | -        # thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
 | 
	
		
			
				|  |  | -        # # print(new_df.head())
 | 
	
		
			
				|  |  | -        # thd.df_day = stk['stk' + stock[:6]]
 | 
	
		
			
				|  |  | -        # for i in thd.df_day.index:
 | 
	
		
			
				|  |  | -        #     if i == 0 or i == 1:
 | 
	
		
			
				|  |  | -        #         thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | -        #     # 不包含
 | 
	
		
			
				|  |  | -        #     elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
 | 
	
		
			
				|  |  | -        #           and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
 | 
	
		
			
				|  |  | -        #             or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
 | 
	
		
			
				|  |  | -        #                 and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
 | 
	
		
			
				|  |  | -        #         thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | -        #     # 包含
 | 
	
		
			
				|  |  | -        #     else:
 | 
	
		
			
				|  |  | -        #         # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
 | 
	
		
			
				|  |  | -        #         # 左高,下降
 | 
	
		
			
				|  |  | -        #         if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
 | 
	
		
			
				|  |  | -        #             thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
 | 
	
		
			
				|  |  | -        #             thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
 | 
	
		
			
				|  |  | -        #         else:
 | 
	
		
			
				|  |  | -        #             # 右高,上升
 | 
	
		
			
				|  |  | -        #             thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
 | 
	
		
			
				|  |  | -        #             thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
 | 
	
		
			
				|  |  | -        # thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine, index=True, if_exists='replace')
 | 
	
		
			
				|  |  | -        # with engine.connect() as con:
 | 
	
		
			
				|  |  | -        #     con.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
 | 
	
		
			
				|  |  | -        # thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
 | 
	
		
			
				|  |  | -        # with engine_backup.connect() as con_backup:
 | 
	
		
			
				|  |  | -        #     con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
 | 
	
		
			
				|  |  | +        thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
 | 
	
		
			
				|  |  | +        # print(new_df.head())
 | 
	
		
			
				|  |  | +        thd.df_day = stk['stk' + stock[:6]]
 | 
	
		
			
				|  |  | +        for i in thd.df_day.index:
 | 
	
		
			
				|  |  | +            if i == 0 or i == 1:
 | 
	
		
			
				|  |  | +                thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +            # 不包含
 | 
	
		
			
				|  |  | +            elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
 | 
	
		
			
				|  |  | +                  and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
 | 
	
		
			
				|  |  | +                    or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
 | 
	
		
			
				|  |  | +                        and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
 | 
	
		
			
				|  |  | +                thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
 | 
	
		
			
				|  |  | +            # 包含
 | 
	
		
			
				|  |  | +            else:
 | 
	
		
			
				|  |  | +                # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
 | 
	
		
			
				|  |  | +                # 左高,下降
 | 
	
		
			
				|  |  | +                if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
 | 
	
		
			
				|  |  | +                    thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
 | 
	
		
			
				|  |  | +                    thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    # 右高,上升
 | 
	
		
			
				|  |  | +                    thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
 | 
	
		
			
				|  |  | +                    thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
 | 
	
		
			
				|  |  | +        thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine, index=True, if_exists='replace')
 | 
	
		
			
				|  |  | +        with engine.connect() as con:
 | 
	
		
			
				|  |  | +            con.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
 | 
	
		
			
				|  |  | +        thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
 | 
	
		
			
				|  |  | +        with engine_backup.connect() as con_backup:
 | 
	
		
			
				|  |  | +            con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
 | 
	
		
			
				|  |  |          # thd.new_df.to_csv(
 | 
	
		
			
				|  |  |          #     '/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220211qbh/qbh%s.csv' % stock[:6])
 | 
	
		
			
				|  |  |          # print(stock)
 |