|
@@ -0,0 +1,313 @@
|
|
|
+import os
|
|
|
+import traceback
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+from sqlalchemy import create_engine
|
|
|
+import pandas as pd
|
|
|
+import pymysql
|
|
|
+import backtrader as bt
|
|
|
+import backtrader.indicators as btind
|
|
|
+import datetime
|
|
|
+import math
|
|
|
+from datetime import datetime as dt
|
|
|
+import multiprocessing as mp
|
|
|
+from backtrader.feeds import PandasData
|
|
|
+
|
|
|
+
|
|
|
+# import multiprocessing
|
|
|
+# import matplotlib
|
|
|
+
|
|
|
+class MyPandasData(PandasData):
|
|
|
+ lines = ('hl',)
|
|
|
+ params = (('hl', 7),)
|
|
|
+ '''
|
|
|
+ lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
|
|
|
+ , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
|
|
|
+ params = (('change_pct', 7),
|
|
|
+ ('net_amount_main', 8),
|
|
|
+ ('net_pct_main', 9),
|
|
|
+ ('net_amount_xl', 10),
|
|
|
+ ('net_pct_xl', 11),
|
|
|
+ ('net_amount_l', 12),
|
|
|
+ ('net_pct_l', 13),
|
|
|
+ ('net_amount_m', 14),
|
|
|
+ ('net_pct_m', 15),
|
|
|
+ ('net_amount_s', 16),
|
|
|
+ ('net_pct_s', 17),
|
|
|
+ )
|
|
|
+ '''
|
|
|
+
|
|
|
+
|
|
|
+class TestStrategy(bt.Strategy):
|
|
|
+ params = (
|
|
|
+ ("num", 3),
|
|
|
+ ('Volatility', 0),
|
|
|
+ ('rate', 5), # 注意要有逗号!!
|
|
|
+ )
|
|
|
+
|
|
|
+ def log(self, txt, dt=None):
|
|
|
+ ''' Logging function for this strategy'''
|
|
|
+ dt = dt or self.datas[0].datetime.date(0)
|
|
|
+ # print('%s, %s' % (dt.isoformat(), txt))
|
|
|
+
|
|
|
+ def __init__(self):
|
|
|
+ # self.num = num
|
|
|
+ # self.Volatility = Volatility/100
|
|
|
+ # Keep a reference to the "close" line in the data[0] dataseries
|
|
|
+ self.dataclose = self.datas[0].close
|
|
|
+ self.dataopen = self.datas[0].open
|
|
|
+ self.high = self.datas[0].high
|
|
|
+ self.low = self.datas[0].low
|
|
|
+ self.volume = self.datas[0].volume
|
|
|
+ self.hl = self.datas[0].hl
|
|
|
+ # self.change_pct = self.datas[0].change_pct
|
|
|
+ # self.net_amount_main = self.datas[0].net_amount_main
|
|
|
+ # self.net_pct_main = self.datas[0].net_pct_main
|
|
|
+ # self.net_amount_xl = self.datas[0].net_amount_xl
|
|
|
+ # self.net_pct_xl = self.datas[0].net_pct_xl
|
|
|
+ # self.net_amount_l = self.datas[0].net_amount_l
|
|
|
+ # self.net_pct_l = self.datas[0].net_pct_l
|
|
|
+ # self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
|
|
|
+ # self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
|
|
|
+ # self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
|
|
|
+
|
|
|
+ def notify_order(self, order):
|
|
|
+ """
|
|
|
+ 订单状态处理
|
|
|
+
|
|
|
+ Arguments:
|
|
|
+ order {object} -- 订单状态
|
|
|
+ """
|
|
|
+ if order.status in [order.Submitted, order.Accepted]:
|
|
|
+ # 如订单已被处理,则不用做任何事情
|
|
|
+ return
|
|
|
+
|
|
|
+ # 检查订单是否完成
|
|
|
+ if order.status in [order.Completed]:
|
|
|
+ if order.isbuy():
|
|
|
+ self.buyprice = order.executed.price
|
|
|
+ self.buycomm = order.executed.comm
|
|
|
+ self.bar_executed = len(self)
|
|
|
+
|
|
|
+ # 订单因为缺少资金之类的原因被拒绝执行
|
|
|
+ elif order.status in [order.Canceled, order.Margin, order.Rejected]:
|
|
|
+ pass
|
|
|
+ # self.log('Order Canceled/Margin/Rejected')
|
|
|
+
|
|
|
+ # 订单状态处理完成,设为空
|
|
|
+ self.order = None
|
|
|
+
|
|
|
+ def notify_trade(self, trade):
|
|
|
+ """
|
|
|
+ 交易成果
|
|
|
+
|
|
|
+ Arguments:
|
|
|
+ trade {object} -- 交易状态
|
|
|
+ """
|
|
|
+ if not trade.isclosed:
|
|
|
+ return
|
|
|
+
|
|
|
+ # 显示交易的毛利率和净利润
|
|
|
+ # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
|
|
|
+
|
|
|
+ def next(self):
|
|
|
+ # print(self.num,self.Volatility)
|
|
|
+ # Simply log the closing price of the series from the reference
|
|
|
+ # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
|
|
|
+ # and (self.sma5[-1] < self.sma10[-1])
|
|
|
+ # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3) \
|
|
|
+ # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
|
|
|
+ if len(self) > self.params.num:
|
|
|
+ # vola = self.params.Volatility / 100
|
|
|
+ # rate = self.params.rate / 100
|
|
|
+ # lowest = np.min(self.low.get(size=self.params.num))
|
|
|
+ # highest = np.max(self.high.get(size=self.params.num))
|
|
|
+ if self.hl[0] == 1 and self.hl[-1] == 2 :
|
|
|
+ self.order = self.buy()
|
|
|
+ elif self.hl[0] == 0 and (self.hl[-1] == 2 or self.hl[-1] == 0):
|
|
|
+ self.order = self.close()
|
|
|
+ '''
|
|
|
+ if len(self) > self.params.num:
|
|
|
+ lowest = np.min(self.low.get(size=self.params.num))
|
|
|
+ highest = np.max(self.high.get(size=self.params.num))
|
|
|
+ vola = self.params.Volatility / 100
|
|
|
+ rate = self.params.rate / 100
|
|
|
+ # print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
|
|
|
+ if (self.dataclose[0] > self.dataopen[0]) \
|
|
|
+ and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
|
|
|
+ (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))) \
|
|
|
+ and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
|
|
|
+ and (not self.position) and (self.sma5[0] > self.sma10[0]):
|
|
|
+ # self.log('BUY CREATE, %.2f' % self.dataclose[0])
|
|
|
+ self.order = self.buy()
|
|
|
+ elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0] \
|
|
|
+ or (self.dataclose[0] > (self.sma5[0] * (1 + rate))) or \
|
|
|
+ (((highest * (1 - vola)) < self.high[-2] < (highest * (1 + vola))) or (
|
|
|
+ (highest * (1 - vola)) < self.high[-1] < (highest * (1 + vola)))):
|
|
|
+ self.order = self.close()
|
|
|
+ # self.log('Close, %.2f' % self.dataclose[0])
|
|
|
+ '''
|
|
|
+
|
|
|
+
|
|
|
+ def stop(self):
|
|
|
+ # pass
|
|
|
+ self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
|
|
|
+
|
|
|
+
|
|
|
+def err_call_back(err):
|
|
|
+ print(f'出错啦~ error:{str(err)}')
|
|
|
+ traceback.format_exc(err)
|
|
|
+
|
|
|
+
|
|
|
+def to_df(lt):
|
|
|
+ df = pd.DataFrame(list(lt), columns=['周期', '波动率', '乖离率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利',
|
|
|
+ '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损'])
|
|
|
+ df.sort_values(by=['周期', '波动率', '乖离率'], ascending=True, inplace=True)
|
|
|
+ df = df.reset_index(drop=True)
|
|
|
+ df.to_csv(f"D:\Daniel\策略\策略穷举{dt.now().strftime('%Y%m%d')}.csv", index=True, encoding='utf-8', mode='w')
|
|
|
+ print(df)
|
|
|
+
|
|
|
+
|
|
|
+def backtrader(list_date, table_list, result, result_change, result_change_fall, num, Volatility, rate, err_list):
|
|
|
+ print(f'{num}天波动率为{Volatility}%乖离率为{rate}', 'myPID is ', os.getpid())
|
|
|
+ sttime = dt.now()
|
|
|
+ engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
|
|
|
+ for stock in table_list:
|
|
|
+ # print(stock)
|
|
|
+ stk_df = pd.read_sql_table(stock, engine)
|
|
|
+ stk_df.time = pd.to_datetime(stk_df.time)
|
|
|
+ stk_df['HL'] = stk_df['HL'].map({'L': 1,
|
|
|
+ 'LL': 1,
|
|
|
+ 'L*': 1,
|
|
|
+ 'H': 0,
|
|
|
+ 'HH': 0,
|
|
|
+ 'H*': 0,
|
|
|
+ '-': 2})
|
|
|
+
|
|
|
+ if len(stk_df) > 60:
|
|
|
+ cerebro = bt.Cerebro()
|
|
|
+ cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
|
|
|
+ cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
|
|
|
+ data = MyPandasData(dataname=stk_df,
|
|
|
+ fromdate=datetime.datetime(2010, 1, 1),
|
|
|
+ todate=datetime.datetime(2022, 10, 30),
|
|
|
+ datetime='time',
|
|
|
+ open='open_back',
|
|
|
+ close='close_back',
|
|
|
+ high='high_back',
|
|
|
+ low='low_back',
|
|
|
+ volume='volume_back',
|
|
|
+ hl='HL'
|
|
|
+ # change_pct='change_pct',
|
|
|
+ # net_amount_main='net_amount_main',
|
|
|
+ # net_pct_main='net_pct_main',
|
|
|
+ # net_amount_xl='net_amount_xl',
|
|
|
+ # net_pct_xl='net_pct_xl',
|
|
|
+ # net_amount_l='net_amount_l',
|
|
|
+ # net_pct_l='net_pct_l',
|
|
|
+ # net_amount_m='net_amount_m',
|
|
|
+ # net_pct_m='net_pct_m',
|
|
|
+ # net_amount_s='net_amount_s',
|
|
|
+ # net_pct_s='net_pct_s',
|
|
|
+ )
|
|
|
+ # print('取值完成')
|
|
|
+ cerebro.adddata(data, name=stock)
|
|
|
+ cerebro.broker.setcash(100000.0)
|
|
|
+ cerebro.broker.setcommission(0.005)
|
|
|
+ cerebro.addanalyzer(bt.analyzers.PyFolio)
|
|
|
+ # 策略执行前的资金
|
|
|
+ # print('启动资金: %.2f' % cerebro.broker.getvalue())
|
|
|
+ try:
|
|
|
+ # 策略执行
|
|
|
+ cerebro.run()
|
|
|
+ except IndexError:
|
|
|
+ err_list.append(stock)
|
|
|
+ else:
|
|
|
+ if cerebro.broker.getvalue() > 100000.0:
|
|
|
+ result_change.append((cerebro.broker.getvalue() / 10000 - 1))
|
|
|
+ result.append(stock)
|
|
|
+ # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
|
|
|
+ # print(result)
|
|
|
+ else:
|
|
|
+ result_change_fall.append((1 - cerebro.broker.getvalue() / 10000))
|
|
|
+ # print('aaaaaaaaaaa')
|
|
|
+ # print(result_change_fall)
|
|
|
+
|
|
|
+ if len(result) * len(result_change) * len(result_change_fall) != 0:
|
|
|
+ print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
|
|
|
+ print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
|
|
|
+ print(
|
|
|
+ f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
|
|
|
+ print(
|
|
|
+ f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
|
|
|
+
|
|
|
+ list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
|
|
|
+ np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
|
|
|
+ np.nansum(result_change_fall), np.nanmean(result_change_fall),
|
|
|
+ np.nanmin(result_change_fall), np.nanmax(result_change_fall)])
|
|
|
+ to_df(list_date)
|
|
|
+ endtime = dt.now()
|
|
|
+ print(f'{num}天波动率为{Volatility}%乖离率为{rate},myPID is {os.getpid()}.本轮耗时为{endtime - sttime}')
|
|
|
+ else:
|
|
|
+ print(result, result_change, result_change_fall, num, Volatility, rate, err_list)
|
|
|
+ # cerebro.plot()
|
|
|
+
|
|
|
+
|
|
|
+df = pd.DataFrame(
|
|
|
+ columns=['周期', '波动率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
|
|
|
+ '平均亏损', '最大亏损', '最小亏损'])
|
|
|
+if __name__ == '__main__':
|
|
|
+ starttime = dt.now()
|
|
|
+ print(starttime)
|
|
|
+ # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8', poolclass=NullPool)
|
|
|
+
|
|
|
+ # stocks = pd.read_sql_query(
|
|
|
+ # 'select value from MA5_1d', engine_hlfx)
|
|
|
+
|
|
|
+ fre = '1d'
|
|
|
+ db = pymysql.connect(host='localhost',
|
|
|
+ user='root',
|
|
|
+ port=3307,
|
|
|
+ password='r6kEwqWU9!v3',
|
|
|
+ database='qmt_stocks_tech')
|
|
|
+ cursor = db.cursor()
|
|
|
+ cursor.execute("show tables like '%%%s%%' " % fre)
|
|
|
+ table_list = [tuple[0] for tuple in cursor.fetchall()]
|
|
|
+ # print(table_list)
|
|
|
+ # table_list = table_list[0:100]
|
|
|
+
|
|
|
+ list_date = mp.Manager().list()
|
|
|
+ thread_list = []
|
|
|
+ pool = mp.Pool(processes=mp.cpu_count())
|
|
|
+ for num in range(60, 100, 20):
|
|
|
+ for Volatility in range(5, 7, 1):
|
|
|
+ for rate in range(7, 9, 1):
|
|
|
+ step = math.ceil(len(table_list) / mp.cpu_count())
|
|
|
+ result = []
|
|
|
+ result_change = []
|
|
|
+ result_change_fall = []
|
|
|
+ err_list = []
|
|
|
+ print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
|
|
|
+ # for i in range(0, len(table_list), step):
|
|
|
+ stattime = dt.now()
|
|
|
+ # thd = threading.local()
|
|
|
+ # print(i)
|
|
|
+ # p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
|
|
|
+ # num, Volatility, rate, err_list))
|
|
|
+ # thread_list.append(p)
|
|
|
+ pool.apply_async(func=backtrader,
|
|
|
+ args=(list_date, table_list, result, result_change, result_change_fall,
|
|
|
+ num, Volatility, rate, err_list,), error_callback=err_call_back)
|
|
|
+ # p.start()
|
|
|
+ # p.join()
|
|
|
+ # print(thread_list)
|
|
|
+ # for thread in thread_list:
|
|
|
+ # thread.start()
|
|
|
+ # for thread in thread_list:
|
|
|
+ # thread.join()
|
|
|
+ pool.close()
|
|
|
+ pool.join()
|
|
|
+
|
|
|
+ edtime = dt.now()
|
|
|
+ print('总耗时:', edtime - starttime)
|
|
|
+ # df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)
|