Browse Source

回测方案

Daniel 2 years ago
parent
commit
dd571f8c4b
2 changed files with 334 additions and 13 deletions
  1. 21 13
      backtrader/230202_backtrader.py
  2. 313 0
      backtrader/230213_backtrader.py

+ 21 - 13
futures_backtrader.py → backtrader/230202_backtrader.py

@@ -1,4 +1,6 @@
 import os
+import traceback
+
 import numpy as np
 from sqlalchemy import create_engine
 import pandas as pd
@@ -114,7 +116,9 @@ class TestStrategy(bt.Strategy):
         # and (self.sma5[-1] < self.sma10[-1])
         # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3)  \
         # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
-        if len(self) > self.params.num:
+
+
+         if len(self) > self.params.num:
             lowest = np.min(self.low.get(size=self.params.num))
             highest = np.max(self.high.get(size=self.params.num))
             vola = self.params.Volatility / 100
@@ -134,6 +138,8 @@ class TestStrategy(bt.Strategy):
                 self.order = self.close()
                 # self.log('Close, %.2f' % self.dataclose[0])
 
+
+
     def stop(self):
         # pass
         self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
@@ -141,6 +147,7 @@ class TestStrategy(bt.Strategy):
 
 def err_call_back(err):
     print(f'出错啦~ error:{str(err)}')
+    traceback.format_exc(err)
 
 
 def to_df(lt):
@@ -148,18 +155,19 @@ def to_df(lt):
                                '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损'])
     df.sort_values(by=['周期', '波动率', '乖离率'], ascending=True, inplace=True)
     df = df.reset_index(drop=True)
-    df.to_csv(r'D:\Daniel\策略\策略穷举.csv', index=True, encoding='utf-8', mode='w')
+    df.to_csv(f"D:\Daniel\策略\策略穷举{dt.now().strftime('%Y%m%d')}.csv", index=True, encoding='utf-8', mode='w')
     print(df)
 
 
 def backtrader(list_date, table_list, result, result_change, result_change_fall, num, Volatility, rate, err_list):
     print(f'{num}天波动率为{Volatility}%乖离率为{rate}', 'myPID is ', os.getpid())
     sttime = dt.now()
-    engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks?charset=utf8')
+    engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
     for stock in table_list:
         # print(stock)
         stk_df = pd.read_sql_table(stock, engine)
         stk_df.time = pd.to_datetime(stk_df.time)
+
         if len(stk_df) > 60:
             cerebro = bt.Cerebro()
             cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
@@ -168,11 +176,11 @@ def backtrader(list_date, table_list, result, result_change, result_change_fall,
                                 fromdate=datetime.datetime(2010, 1, 1),
                                 todate=datetime.datetime(2022, 10, 30),
                                 datetime='time',
-                                open='open',
-                                close='close',
-                                high='high',
-                                low='low',
-                                volume='volume',
+                                open='open_back',
+                                close='close_back',
+                                high='high_back',
+                                low='low_back',
+                                volume='volume_back',
                                 # change_pct='change_pct',
                                 # net_amount_main='net_amount_main',
                                 # net_pct_main='net_pct_main',
@@ -228,9 +236,9 @@ def backtrader(list_date, table_list, result, result_change, result_change_fall,
     # cerebro.plot()
 
 
-# df = pd.DataFrame(
-#     columns=['周期', '波动率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
-#              '平均亏损', '最大亏损', '最小亏损'])
+df = pd.DataFrame(
+    columns=['周期', '波动率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
+             '平均亏损', '最大亏损', '最小亏损'])
 if __name__ == '__main__':
     starttime = dt.now()
     print(starttime)
@@ -249,13 +257,13 @@ if __name__ == '__main__':
     cursor.execute("show tables like '%%%s%%' " % fre)
     table_list = [tuple[0] for tuple in cursor.fetchall()]
     # print(table_list)
-    table_list = table_list[0:100]
+    # table_list = table_list[0:100]
 
     list_date = mp.Manager().list()
     thread_list = []
     pool = mp.Pool(processes=mp.cpu_count())
     for num in range(60, 100, 20):
-        for Volatility in range(3, 7, 1):
+        for Volatility in range(5, 7, 1):
             for rate in range(7, 9, 1):
                 step = math.ceil(len(table_list) / mp.cpu_count())
                 result = []

+ 313 - 0
backtrader/230213_backtrader.py

@@ -0,0 +1,313 @@
+import os
+import traceback
+
+import numpy as np
+from sqlalchemy import create_engine
+import pandas as pd
+import pymysql
+import backtrader as bt
+import backtrader.indicators as btind
+import datetime
+import math
+from datetime import datetime as dt
+import multiprocessing as mp
+from backtrader.feeds import PandasData
+
+
+# import multiprocessing
+# import matplotlib
+
+class MyPandasData(PandasData):
+    lines = ('hl',)
+    params = (('hl', 7),)
+    '''
+    lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
+             , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
+    params = (('change_pct', 7),
+              ('net_amount_main', 8),
+              ('net_pct_main', 9),
+              ('net_amount_xl', 10),
+              ('net_pct_xl', 11),
+              ('net_amount_l', 12),
+              ('net_pct_l', 13),
+              ('net_amount_m', 14),
+              ('net_pct_m', 15),
+              ('net_amount_s', 16),
+              ('net_pct_s', 17),
+              )
+    '''
+
+
+class TestStrategy(bt.Strategy):
+    params = (
+        ("num", 3),
+        ('Volatility', 0),
+        ('rate', 5),  # 注意要有逗号!!
+    )
+
+    def log(self, txt, dt=None):
+        ''' Logging function for this strategy'''
+        dt = dt or self.datas[0].datetime.date(0)
+        # print('%s, %s' % (dt.isoformat(), txt))
+
+    def __init__(self):
+        # self.num = num
+        # self.Volatility = Volatility/100
+        # Keep a reference to the "close" line in the data[0] dataseries
+        self.dataclose = self.datas[0].close
+        self.dataopen = self.datas[0].open
+        self.high = self.datas[0].high
+        self.low = self.datas[0].low
+        self.volume = self.datas[0].volume
+        self.hl = self.datas[0].hl
+        # self.change_pct = self.datas[0].change_pct
+        # self.net_amount_main = self.datas[0].net_amount_main
+        # self.net_pct_main = self.datas[0].net_pct_main
+        # self.net_amount_xl = self.datas[0].net_amount_xl
+        # self.net_pct_xl = self.datas[0].net_pct_xl
+        # self.net_amount_l = self.datas[0].net_amount_l
+        # self.net_pct_l = self.datas[0].net_pct_l
+        # self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
+        # self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
+        # self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
+
+    def notify_order(self, order):
+        """
+        订单状态处理
+
+        Arguments:
+            order {object} -- 订单状态
+        """
+        if order.status in [order.Submitted, order.Accepted]:
+            # 如订单已被处理,则不用做任何事情
+            return
+
+        # 检查订单是否完成
+        if order.status in [order.Completed]:
+            if order.isbuy():
+                self.buyprice = order.executed.price
+                self.buycomm = order.executed.comm
+            self.bar_executed = len(self)
+
+        # 订单因为缺少资金之类的原因被拒绝执行
+        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
+            pass
+            # self.log('Order Canceled/Margin/Rejected')
+
+        # 订单状态处理完成,设为空
+        self.order = None
+
+    def notify_trade(self, trade):
+        """
+        交易成果
+
+        Arguments:
+            trade {object} -- 交易状态
+        """
+        if not trade.isclosed:
+            return
+
+        # 显示交易的毛利率和净利润
+        # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
+
+    def next(self):
+        # print(self.num,self.Volatility)
+        # Simply log the closing price of the series from the reference
+        # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
+        # and (self.sma5[-1] < self.sma10[-1])
+        # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3)  \
+        # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
+        if len(self) > self.params.num:
+            # vola = self.params.Volatility / 100
+            # rate = self.params.rate / 100
+            # lowest = np.min(self.low.get(size=self.params.num))
+            # highest = np.max(self.high.get(size=self.params.num))
+            if self.hl[0] == 1 and self.hl[-1] == 2 :
+                self.order = self.buy()
+            elif self.hl[0] == 0 and (self.hl[-1] == 2 or self.hl[-1] == 0):
+                self.order = self.close()
+        '''
+                if len(self) > self.params.num:
+            lowest = np.min(self.low.get(size=self.params.num))
+            highest = np.max(self.high.get(size=self.params.num))
+            vola = self.params.Volatility / 100
+            rate = self.params.rate / 100
+            # print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
+            if (self.dataclose[0] > self.dataopen[0]) \
+                    and (((lowest * (1 - vola)) < self.low[-2] < (lowest * (1 + vola))) or (
+                    (lowest * (1 - vola)) < self.low[-1] < (lowest * (1 + vola)))) \
+                    and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
+                    and (not self.position) and (self.sma5[0] > self.sma10[0]):
+                # self.log('BUY CREATE, %.2f' % self.dataclose[0])
+                self.order = self.buy()
+            elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0] \
+                    or (self.dataclose[0] > (self.sma5[0] * (1 + rate))) or \
+                    (((highest * (1 - vola)) < self.high[-2] < (highest * (1 + vola))) or (
+                            (highest * (1 - vola)) < self.high[-1] < (highest * (1 + vola)))):
+                self.order = self.close()
+                # self.log('Close, %.2f' % self.dataclose[0])
+        '''
+
+
+    def stop(self):
+        # pass
+        self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
+
+
+def err_call_back(err):
+    print(f'出错啦~ error:{str(err)}')
+    traceback.format_exc(err)
+
+
+def to_df(lt):
+    df = pd.DataFrame(list(lt), columns=['周期', '波动率', '乖离率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利',
+                               '最小盈利', '总亏损', '平均亏损', '最大亏损', '最小亏损'])
+    df.sort_values(by=['周期', '波动率', '乖离率'], ascending=True, inplace=True)
+    df = df.reset_index(drop=True)
+    df.to_csv(f"D:\Daniel\策略\策略穷举{dt.now().strftime('%Y%m%d')}.csv", index=True, encoding='utf-8', mode='w')
+    print(df)
+
+
+def backtrader(list_date, table_list, result, result_change, result_change_fall, num, Volatility, rate, err_list):
+    print(f'{num}天波动率为{Volatility}%乖离率为{rate}', 'myPID is ', os.getpid())
+    sttime = dt.now()
+    engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
+    for stock in table_list:
+        # print(stock)
+        stk_df = pd.read_sql_table(stock, engine)
+        stk_df.time = pd.to_datetime(stk_df.time)
+        stk_df['HL'] = stk_df['HL'].map({'L': 1,
+                                         'LL': 1,
+                                         'L*': 1,
+                                         'H': 0,
+                                         'HH': 0,
+                                         'H*': 0,
+                                         '-': 2})
+
+        if len(stk_df) > 60:
+            cerebro = bt.Cerebro()
+            cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
+            cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
+            data = MyPandasData(dataname=stk_df,
+                                fromdate=datetime.datetime(2010, 1, 1),
+                                todate=datetime.datetime(2022, 10, 30),
+                                datetime='time',
+                                open='open_back',
+                                close='close_back',
+                                high='high_back',
+                                low='low_back',
+                                volume='volume_back',
+                                hl='HL'
+                                # change_pct='change_pct',
+                                # net_amount_main='net_amount_main',
+                                # net_pct_main='net_pct_main',
+                                # net_amount_xl='net_amount_xl',
+                                # net_pct_xl='net_pct_xl',
+                                # net_amount_l='net_amount_l',
+                                # net_pct_l='net_pct_l',
+                                # net_amount_m='net_amount_m',
+                                # net_pct_m='net_pct_m',
+                                # net_amount_s='net_amount_s',
+                                # net_pct_s='net_pct_s',
+                                )
+            # print('取值完成')
+            cerebro.adddata(data, name=stock)
+            cerebro.broker.setcash(100000.0)
+            cerebro.broker.setcommission(0.005)
+            cerebro.addanalyzer(bt.analyzers.PyFolio)
+            # 策略执行前的资金
+            # print('启动资金: %.2f' % cerebro.broker.getvalue())
+            try:
+                # 策略执行
+                cerebro.run()
+            except IndexError:
+                err_list.append(stock)
+            else:
+                if cerebro.broker.getvalue() > 100000.0:
+                    result_change.append((cerebro.broker.getvalue() / 10000 - 1))
+                    result.append(stock)
+                    # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
+                    # print(result)
+                else:
+                    result_change_fall.append((1 - cerebro.broker.getvalue() / 10000))
+                    # print('aaaaaaaaaaa')
+                    # print(result_change_fall)
+
+    if len(result) * len(result_change) * len(result_change_fall) != 0:
+        print(f'以{num}内最低值波动{Volatility}为支撑、乖离率为{rate}%,结果状态为:')
+        print('正盈利的个股为:', len(result_change), '成功率为:', len(result) / len(table_list))
+        print(
+            f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
+        print(
+            f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
+
+        list_date.append([num, Volatility, rate, len(result), len(result) / len(table_list), np.nansum(result_change),
+                          np.nanmean(result_change), np.nanmax(result_change), np.min(result_change),
+                          np.nansum(result_change_fall), np.nanmean(result_change_fall),
+                          np.nanmin(result_change_fall), np.nanmax(result_change_fall)])
+        to_df(list_date)
+        endtime = dt.now()
+        print(f'{num}天波动率为{Volatility}%乖离率为{rate},myPID is {os.getpid()}.本轮耗时为{endtime - sttime}')
+    else:
+        print(result, result_change, result_change_fall, num, Volatility, rate, err_list)
+    # cerebro.plot()
+
+
+df = pd.DataFrame(
+    columns=['周期', '波动率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
+             '平均亏损', '最大亏损', '最小亏损'])
+if __name__ == '__main__':
+    starttime = dt.now()
+    print(starttime)
+    # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8', poolclass=NullPool)
+
+    # stocks = pd.read_sql_query(
+    #                     'select value from MA5_1d', engine_hlfx)
+
+    fre = '1d'
+    db = pymysql.connect(host='localhost',
+                         user='root',
+                         port=3307,
+                         password='r6kEwqWU9!v3',
+                         database='qmt_stocks_tech')
+    cursor = db.cursor()
+    cursor.execute("show tables like '%%%s%%' " % fre)
+    table_list = [tuple[0] for tuple in cursor.fetchall()]
+    # print(table_list)
+    # table_list = table_list[0:100]
+
+    list_date = mp.Manager().list()
+    thread_list = []
+    pool = mp.Pool(processes=mp.cpu_count())
+    for num in range(60, 100, 20):
+        for Volatility in range(5, 7, 1):
+            for rate in range(7, 9, 1):
+                step = math.ceil(len(table_list) / mp.cpu_count())
+                result = []
+                result_change = []
+                result_change_fall = []
+                err_list = []
+                print(f'{num}天波动率为{Volatility}%乖离率为{rate}')
+                # for i in range(0, len(table_list), step):
+                stattime = dt.now()
+                # thd = threading.local()
+                # print(i)
+                # p = mp.Process(target=backtrader, args=(df, table_list, result, result_change, result_change_fall,
+                #                                         num, Volatility, rate, err_list))
+                # thread_list.append(p)
+                pool.apply_async(func=backtrader,
+                                 args=(list_date, table_list, result, result_change, result_change_fall,
+                                       num, Volatility, rate, err_list,), error_callback=err_call_back)
+                # p.start()
+                # p.join()
+                # print(thread_list)
+    # for thread in thread_list:
+    #     thread.start()
+    # for thread in thread_list:
+    #     thread.join()
+    pool.close()
+    pool.join()
+
+    edtime = dt.now()
+    print('总耗时:', edtime - starttime)
+    # df.to_csv(r'C:\Users\Daniel\Documents\策略穷举2.csv', index=True)