# coding:utf-8 from datetime import datetime as dt import numpy as np import os import pandas as pd import time from sqlalchemy import create_engine from jqdatasdk import * import pymysql import multiprocessing as mp import math import talib as ta from xtquant import xtdata import os import traceback pd.set_option('display.max_columns', None) # 设置显示最大行 engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_whole?charset=utf8') def err_call_back(err): print(f'出错啦~ error:{str(err)}') traceback.print_exc() def myself_kdj(df): low_list = df['low_back'].rolling(9, min_periods=9).min() low_list.fillna(value=df['low_back'].expanding().min(), inplace=True) high_list = df['high_back'].rolling(9, min_periods=9).max() high_list.fillna(value=df['high_back'].expanding().max(), inplace=True) rsv = (df['close_back'] - low_list) / (high_list - low_list) * 100 df['k'] = pd.DataFrame(rsv).ewm(com=2).mean() df['d'] = df['k'].ewm(com=2).mean() df['j'] = 3 * df['k'] - 2 * df['d'] return df # macd指标 def get_macd_data(data, short=0, long1=0, mid=0): if short == 0: short = 12 if long1 == 0: long1 = 26 if mid == 0: mid = 9 data['sema'] = pd.Series(data['close_back']).ewm(span=short).mean() data['lema'] = pd.Series(data['close_back']).ewm(span=long1).mean() data.fillna(0, inplace=True) data['dif'] = data['sema'] - data['lema'] data['dea'] = pd.Series(data['dif']).ewm(span=mid).mean() data['macd'] = 2 * (data['dif'] - data['dea']) data.fillna(0, inplace=True) # return data[['dif', 'dea', 'macd']] # rsi指标 # 建议用talib库的RSI方法,亲测有用 def get_ris(data): data["rsi_6"] = ta.RSI(data['close_back'], timeperiod=6) data["rsi_12"] = ta.RSI(data['close_back'], timeperiod=12) data["rsi_24"] = ta.RSI(data['close_back'], timeperiod=24) def get_bias(data): # 计算方法: # bias指标 # N期BIAS=(当日收盘价-N期平均收盘价)/N期平均收盘价*100% data['bias_6'] = (data['close_back'] - data['close_back'].rolling(6, min_periods=1).mean()) / \ data['close_back'].rolling(6, min_periods=1).mean() * 100 data['bias_12'] = (data['close_back'] - data['close_back'].rolling(12, min_periods=1).mean()) / \ data['close_back'].rolling(12, min_periods=1).mean() * 100 data['bias_24'] = (data['close_back'] - data['close_back'].rolling(24, min_periods=1).mean()) / \ data['close_back'].rolling(24, min_periods=1).mean() * 100 data['bias_6'] = round(data['bias_6'], 2) data['bias_12'] = round(data['bias_12'], 2) data['bias_24'] = round(data['bias_24'], 2) def get_wilr(data): # 威廉指标 # 建议用talib库的WILLR方法,亲测有用 data['willr'] = ta.WILLR(data['high_back'], data['low_back'], data['close_back'], timeperiod=14) def get_hlfx(data): Trading_signals = 0 data_temp = data[['time', 'open_back', 'close_back', 'high_back', 'low_back', 'dif', 'dea', 'macd']] data_temp.columns = ['time', 'open', 'close', 'high', 'low', 'dif', 'dea', 'macd'] df_day = pd.DataFrame(columns=['time', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL']) # 先处理去包含 for i in data_temp.index: if i == 0 or i == 1: df_day = pd.concat([df_day, data_temp.iloc[[i]]], ignore_index=True) # 不包含 elif (df_day.iloc[-1, 3] > data_temp.loc[i, 'high'] and df_day.iloc[-1, 4] > data_temp.loc[i, 'low']) \ or (df_day.iloc[-1, 3] < data_temp.loc[i, 'high'] and df_day.iloc[-1, 4] < data_temp.loc[i, 'low']): df_day = pd.concat([df_day, data_temp.loc[[i]]], ignore_index=True) # 包含 else: # 左高,下降 if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]: df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], data_temp.loc[i, 'high']) df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], data_temp.loc[i, 'low']) else: # 右高,上升 df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], data_temp.loc[i, 'high']) df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], data_temp.loc[i, 'low']) # print('111', df_day, data_temp) if len(df_day.index) > 2: # 寻找顶底分型 for x in range(2, len(df_day.index)): m = x - 1 # 底 if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])): df_day.loc[x, 'HL'] = 'L*' while m: if df_day.loc[m, 'HL'] in ['H', 'HH', 'H*']: if (x - m) > 3: # 成笔——>L df_day.loc[x, 'HL'] = 'L' # 产生信号,进入hlfx_pool if x == len(df_day.index) - 1: Trading_signals = 1 elif df_day.loc[m, 'HL'] == 'L': if df_day.loc[m - 1, 'low'] > df_day.loc[x - 1, 'low']: # 前一个为底更高,且中间不存在更低的底 df_day.loc[x, 'HL'] = 'L' # 产生信号,进入hlfx_pool if x == len(df_day.index) - 1: Trading_signals = 1 # 获得MACD,判断MACD判断背驰 x_macd_dif, x_macd_dea, x_macd_macd = data_temp.loc[x, 'dif'], data_temp.loc[x, 'dea'], data_temp.loc[x, 'macd'] m_macd_dif, m_macd_dea, m_macd_macd = data_temp.loc[m, 'dif'], data_temp.loc[m, 'dea'], data_temp.loc[m, 'macd'] # MACD底背驰 if m_macd_dif < x_macd_dif: # 背驰底->LL df_day.loc[x, 'HL'] = 'LL' break break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'L' # 顶 elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])): df_day.loc[x, 'HL'] = 'H*' while m: if df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']: if x - m > 3: # 成笔->H df_day.loc[x, 'HL'] = 'H' # 产生信号,进入hlfx_pool if x == len(df_day.index) - 1: Trading_signals = 2 elif (df_day.loc[m, 'HL'] == 'H'): if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']: # 前一个为顶,且中间存在不包含 or 更高的顶 df_day.loc[x, 'HL'] = 'H' # 产生信号,进入hlfx_pool if x == len(df_day.index) - 1: Trading_signals = 2 # 获得MACD,判断MACD判断背驰 x_macd_dif, x_macd_dea, x_macd_macd = data_temp.loc[x, 'dif'], data_temp.loc[x, 'dea'], data_temp.loc[x, 'macd'] m_macd_dif, m_macd_dea, m_macd_macd = data_temp.loc[m, 'dif'], data_temp.loc[m, 'dea'], data_temp.loc[m, 'macd'] # MACD顶背驰 if x_macd_dif < m_macd_dif: df_day.loc[x, 'HL'] = 'HH' break break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'H' else: df_day.loc[x, 'HL'] = '-' df_temp = df_day[['time', 'HL']] return df_temp, Trading_signals def tech_anal(stocks, hlfx_pool,err_list): print(f'{dt.now()}开始循环计算! MyPid is {os.getpid()},池子长度为{len(stocks)}') engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8') m = 0 for stock in stocks: # print(stock) try: df = pd.read_sql_table('%s_1d' % stock, con=engine) df.dropna(axis=0, how='any') except BaseException: print(f'{stock}读取有问题') traceback.print_exc() pass else: if len(df) != 0: try: get_macd_data(df) get_ris(df) get_bias(df) get_wilr(df) df_temp, T_signals = get_hlfx(df) df = pd.merge(df, df_temp, on='time', how='left') df['HL'].fillna(value='-', inplace=True) df = df.reset_index(drop=True) # print(stock, '\n', df[['open_front', 'HL']]) df = df.replace([np.inf, -np.inf], np.nan) df.to_sql('%s_1d' % stock, con=engine_tech, index=False, if_exists='replace') # with engine.connect() as con: # con.execute("ALTER TABLE `%s_1d` ADD PRIMARY KEY (`time`);" % stock) except BaseException: print(f'{stock}存储有问题') traceback.print_exc() err_list.append(stock) pass else: # print(f"{stock} 成功!") m += 1 else: err_list.append(stock) print(f'{stock}数据为空') if stock in hlfx_pool and T_signals == 2: hlfx_pool.remove(stock) elif stock not in hlfx_pool and T_signals == 1: hlfx_pool.append(stock) print(f'Pid:{os.getpid()}已经完工了,应处理{len(stocks)},共计算{m}支个股') if __name__ == '__main__': sttime = dt.now() stocks = xtdata.get_stock_list_in_sector('沪深A股') print(len(stocks)) stocks.sort() err_list = mp.Manager().list() fre = '1d' engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8') hlfx_pool = mp.Manager().list() hlfx_pool.extend(pd.read_sql_query( 'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(",")) pool = mp.Pool(processes=mp.cpu_count()) step = math.ceil(len(stocks) / mp.cpu_count()) # step = 10000 x = 1 # tech_anal(stocks, hlfx_pool) for i in range(0, len(stocks), step): print(x) pool.apply_async(func=tech_anal, args=(stocks[i:i + step], hlfx_pool, err_list,), error_callback=err_call_back) x += 1 time.sleep(5) pool.close() pool.join() print(hlfx_pool) print(len(err_list), err_list) # 存档入库 db_pool = pymysql.connect(host='localhost', user='root', port=3307, password='r6kEwqWU9!v3', database='hlfx_pool') cursor_pool = db_pool.cursor() results_list = ','.join(set(hlfx_pool)) sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list) cursor_pool.execute(sql) db_pool.commit() edtime = dt.now() print(edtime - sttime)