import threading import pymysql import pandas as pd from threading import Thread, current_thread, local from sqlalchemy import create_engine from datetime import datetime as dt starttime = dt.now() time = dt.strptime(dt.strftime(dt.now(),'%H:%M:%S'),'%H:%M:%S') # 数据库引擎 # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8') # 连接数据库 db = pymysql.connect(host='localhost', user='root', port=3307, password='r6kEwqWU9!v3', database='qbh_hlfx') fre = '1d' cursor = db.cursor() cursor.execute("select table_name from information_schema.tables where table_schema='qbh_hlfx' and table_name like {}".format('\'%{}\''.format(fre))) table_list = [tuple[0] for tuple in cursor.fetchall()] # print(table_list) stk = threading.local() engine = locals() # 主程序 # 找顶底(hdx lfx)分型 def hlfx(table_list,engine): for table in table_list: # stk.fxdf = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL')) stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from %s' % table, engine) for i in stk.df_day.index: m = i-1 if i <= 3: # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) stk.df_day.loc[i, 'HL'] = '-' # 底 elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])): # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) while m: if (stk.df_day.loc[m, 'HL'] == 'H' and (i-m) > 3) \ or (stk.df_day.loc[m, 'HL'] == 'L' and stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']): # 前一个为顶,且中间存在不包含 or 更低的底 stk.df_day.loc[i, 'HL'] = 'L' break m = m-1 # 顶 elif ((stk.df_day.loc[i,'high'] 3) \ or (stk.df_day.loc[m, 'HL'] == 'H' and stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']): # 前一个为底,且中间存在不包含 or 更高的顶 stk.df_day.loc[i, 'HL'] = 'H' break m = m-1 else: stk.df_day.loc[i, 'HL'] = '-' # stk.df_day.to_sql('%s' % table, con=engine, index=True, if_exists='replace', chunksize=20000) print(table, '\n', stk.df_day) stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx/this%s.csv' % table) # table_list = ['stk002237_1d','stk000002_1d'] # hlfx(table_list) step = 50 for i in range(0, len(table_list), step): engine[i] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8') threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[i])).start() endtime=dt.now() print((endtime - starttime).seconds)