import threading import pymysql import pandas as pd from sqlalchemy import create_engine # 数据库引擎 # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8') # 连接数据库 db = pymysql.connect(host='localhost', user='root', port=3307, password='r6kEwqWU9!v3', database='qbh_hlfx_backup') fre = '1d' cursor = db.cursor() # cursor.execute("select table_name from information_schema.tables where table_schema='qbh_hlfx_backup' and table_name like {}".format('\'%{}\''.format(fre))) cursor.execute('show tables like {}'.format('\'%{}\''.format(fre))) # table_list = [tuple[0] for tuple in cursor.fetchall()] # print(table_list) stk = threading.local() # 主程序 # 找顶底(hdx lfx)分型 def hlfx(table_list, engine, tosql): for table in table_list: # stk.fxdf = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL')) # stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from %s' % table, engine) print(engine) print(tosql) # stk.df_day.to_sql(name='%s' % table, con=tosql, index=True, if_exists='replace') # with tosql.connect() as con_backup: # con_backup.execute('ALTER TABLE %s ADD PRIMARY KEY (`date`);' % table) # for i in stk.df_day.index: # m = i - 1 # if i <= 3: # # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) # stk.df_day.loc[i, 'HL'] = '-' # # 底 # elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])): # # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) # stk.df_day.loc[i, 'HL'] = 'L*' # while m: # if m == 1: # stk.df_day.loc[i, 'HL'] = 'l' # elif stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h': # if(i-m) > 3: # stk.df_day.loc[i, 'HL'] = 'L' # break # elif (stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l'): # if stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']: # # 前一个为顶,且中间存在不包含 or 更低的底 # stk.df_day.loc[i, 'HL'] = 'L' # break # else: # break # m = m-1 # # # 顶 # elif ((stk.df_day.loc[i,'high'] 3: # stk.df_day.loc[i, 'HL'] = 'H' # stk.df_day.loc[i, 9] = stk.df_day.loc[i, 'close'] - stk.df_day.loc[m, 'close'] # break # elif (stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h'): # if stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']: # # 前一个为底,且中间存在不包含 or 更高的顶 # stk.df_day.loc[i, 'HL'] = 'H' # break # break # m = m-1 # else: # stk.df_day.loc[i, 'HL'] = '-' # stk.df_day.to_sql('%s' % table, con=engine, index=True, if_exists='replace', chunksize=20000) # print(table, '\n', stk.df_day) # stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx2/hlfx%s.csv' % table) # stk.df_day.to_sql(name='%s' % table, con=tosql, index=True, if_exists='replace') # with tosql.connect() as con_backup: # con_backup.execute('ALTER TABLE %s ADD PRIMARY KEY (`date`);' % table) table_list = ['stk002237_1d','stk000004_1d'] # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8') # tosql = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/bb22?charset=utf8') # hlfx(table_list, engine, tosql) step = 50 thread_list = [] engine = [] tosql = [] for i in range(0, len(table_list), step): engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')) tosql.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/bb22?charset=utf8')) threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[i], tosql[i],)).start()