# coding:utf-8 # from jqdatasdk import * import pandas as pd import pymysql from sqlalchemy import create_engine, text import threading from datetime import datetime as dt import datetime from jqdatasdk.technical_analysis import * from xtquant import xtdata, xtconstant from xtquant.xttype import StockAccount from xtquant.xttrader import XtQuantTrader, XtQuantTraderCallback import time import math import multiprocessing as mp import os import psutil import traceback from apscheduler.schedulers.blocking import BlockingScheduler import sys import gc # 原始版本 # auth('18616891214', 'Ea?*7f68nD.dafcW34d!') # auth('18521506014', 'Abc123!@#') # stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index) # stocks = stocks[0:200] pd.set_option('display.max_columns', None) # 设置显示最大行 fre = '1d' class MyXtQuantTraderCallback(XtQuantTraderCallback): def on_disconnected(self): """ 连接断开 :return: """ print(datetime.datetime.now(), '连接断开回调') def on_stock_order(self, order): """ 委托回报推送 :param order: XtOrder对象 :return: """ print(datetime.datetime.now(), '委托回调', order.order_remark) def on_stock_trade(self, trade): """ 成交变动推送 :param trade: XtTrade对象 :return: """ print(datetime.datetime.now(), '成交回调', trade.order_remark) def on_order_error(self, order_error): """ 委托失败推送 :param order_error:XtOrderError 对象 :return: """ # print("on order_error callback") # print(order_error.order_id, order_error.error_id, order_error.error_msg) print(f"委托报错回调 {order_error.order_remark} {order_error.error_msg}") def on_cancel_error(self, cancel_error): """ 撤单失败推送 :param cancel_error: XtCancelError 对象 :return: """ print(datetime.datetime.now(), sys._getframe().f_code.co_name) def on_order_stock_async_response(self, response): """ 异步下单回报推送 :param response: XtOrderResponse 对象 :return: """ print(f"异步委托回调 {response.order_remark}") def on_cancel_order_stock_async_response(self, response): """ :param response: XtCancelOrderResponse 对象 :return: """ print(datetime.datetime.now(), sys._getframe().f_code.co_name) def on_account_status(self, status): """ :param response: XtAccountStatus 对象 :return: """ print(datetime.datetime.now(), sys._getframe().f_code.co_name) def err_call_back(err): print(f'问题在这里~ error:{str(err)}') traceback.print_exc() def run(seq): mor = datetime.datetime.strptime( str(dt.now().date()) + '11:30', '%Y-%m-%d%H:%M') afternoon = datetime.datetime.strptime( str(dt.now().date()) + '15:00', '%Y-%m-%d%H:%M') mor_1 = datetime.datetime.strptime( str(dt.now().date()) + '11:10', '%Y-%m-%d%H:%M') """阻塞线程接收行情回调""" import time client = xtdata.get_client() while True: now_date = dt.now() if not client.is_connected(): xtdata.unsubscribe_quote(seq) raise Exception('行情服务连接断开') # if mor < dt.now() < mor_1: # xtdata.unsubscribe_quote(seq) # print(f'现在时间:{dt.now()},已休市') # sys.exit() # break # return 0 elif dt.now() > afternoon: xtdata.unsubscribe_quote(seq) print(f'现在时间:{dt.now()},已收盘') sys.exit() break return def hlfx(stock_list, data): # stock_list = list(data.keys()) # print(f'def-->hlfx, MyPid is {os.getpid()}, 本次我需要计算{len(stock_list)},now is {dt.now()}') # 获得hlfx_pool池子 engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8', pool_size=100, pool_recycle=60, max_overflow=50, pool_timeout=60) results = [] results.extend(pd.read_sql_query(text( 'select value from `%s` order by `index` desc limit 10' % fre), engine_hlfx_pool.connect()).iloc[0, 0].split(",")) # print(f'本次hlfx_pool有{len(results)}个个股') engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8', pool_size=100, pool_recycle=60, max_overflow=50, pool_timeout=60) for qmt_stock in stock_list: # 读取qmt_stocks_whole表-前复权-信息 try: df_day = pd.read_sql_query(text( 'select time, open_front, close_front, high_front, low_front, volume_front, amount_front, ' 'dif, dea, macd, HL from `%s_%s`' % (qmt_stock, fre)), engine_stock.connect()) df_day.columns = ['time', 'open', 'close', 'high', 'low', 'volume', 'amount', 'dif', 'dea', 'macd', 'HL'] except BaseException as e: print(qmt_stock, '未能读取!') pass else: # 获得最新价格信息 get_price = data[qmt_stock] # print(get_price) # 调整time时间格式 get_price['time'] = dt.fromtimestamp(get_price['time'] / 1000.0) # print('成功判定', get_price['time']) # 先处理去包含 # 不包含 if (df_day.iloc[-1, 3] > get_price['high'] and df_day.iloc[-1, 4] > get_price['low']) \ or (df_day.iloc[-1, 3] < get_price['high'] and df_day.iloc[-1, 4] < get_price['low']): # print('lalallala', get_price['open'], get_price['lastPrice'], get_price['high'], # get_price['low'], get_price['volume'], get_price['amount']) qmt_df = pd.DataFrame(data=[[get_price['time'], get_price['open'], get_price['lastPrice'], get_price['high'], get_price['low'], get_price['volume'], get_price['amount']]], columns=['time', 'open', 'close', 'high', 'low', 'volume', 'amount']) # print('qmt_______', qmt_df) df_day = pd.concat([df_day, qmt_df], ignore_index=True) # print('不包含,合并完成', df_day) # 包含 else: if len(df_day) > 2: # 左高,下降 if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]: df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price['high']) df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price['low']) # 右高,上升 else: df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price['high']) df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price['low']) # print('包含', df_day) # 数合并完成,确认df_day # print(df_day) # 寻找顶底分型 if len(df_day) > 2: x = len(df_day.index)-1 m = x - 1 # 底 if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])): df_day.loc[x, 'HL'] = 'L*' # 判断底的性质 while m: if df_day.loc[m, 'HL'] in ['H', 'HH', 'H*']: if (x - m) > 3: # 成笔——>L df_day.loc[x, 'HL'] = 'L' break elif df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']: if df_day.loc[m - 1, 'low'] > df_day.loc[x - 1, 'low']: # pool_list.append(qmt_stock) # 获得MACD,判断MACD判断背驰 x_macd_dif, x_macd_dea, x_macd_macd = df_day.loc[x, 'dif'], df_day.loc[x, 'dea'], \ df_day.loc[x, 'macd'] m_macd_dif, m_macd_dea, m_macd_macd = df_day.loc[m, 'dif'], df_day.loc[m, 'dea'], \ df_day.loc[m, 'macd'] # 背驰底->LL if m_macd_dif < x_macd_dif: df_day.loc[x, 'HL'] = 'LL' # 产生信号,进入hlfx_pool results.append(qmt_stock) break # 前一个为底更高,且中间不存在更低的底 else: df_day.loc[x, 'HL'] = 'L' # 产生信号,进入hlfx_pool break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'L' results.append(qmt_stock) # 顶 elif (df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high']) and (qmt_stock in results): df_day.loc[x, 'HL'] = 'H*' while m: if df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']: if x - m > 3: # 成笔->H df_day.loc[x, 'HL'] = 'H' # 产生卖出信号,进入hlfx_pool results.remove(qmt_stock) break elif df_day.loc[m, 'HL'] in ['H','HH', 'H*']: if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']: # 获得MACD,判断MACD判断背驰 x_macd_dif, x_macd_dea, x_macd_macd = df_day.loc[x, 'dif'], df_day.loc[x, 'dea'], \ df_day.loc[x, 'macd'] m_macd_dif, m_macd_dea, m_macd_macd = df_day.loc[m, 'dif'], df_day.loc[m, 'dea'], \ df_day.loc[m, 'macd'] # MACD顶背驰 if x_macd_dif < m_macd_dif: df_day.loc[x, 'HL'] = 'HH' # 产生卖出信号,进入hlfx_pool results.remove(qmt_stock) break # 前一个为顶,且中间存在不包含 or 更高的顶 else: df_day.loc[x, 'HL'] = 'H' # 产生卖出信号,进入hlfx_pool results.remove(qmt_stock) break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'H' results.remove(qmt_stock) db_pool = pymysql.connect(host='localhost', user='root', port=3307, password='r6kEwqWU9!v3', database='hlfx_pool') cursor_pool = db_pool.cursor() results_list = ','.join(set(results)) sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list) cursor_pool.execute(sql) db_pool.commit() print(f'{dt.now()} 新的results有{len(set(results))}, \n {set(results)}') engine_stock.dispose() engine_hlfx_pool.dispose() def prepare(data): print(dt.now()) stock_list = list(data.keys()) if len(data.keys()) >= 12: cpu_count = 12 else: cpu_count = len(data.keys()) step = math.ceil(len(stock_list) / cpu_count) to_hlfx_list = [] for i in range(0, len(stock_list), step): to_hlfx_list.append([x for x in stock_list[i:i + step]]) pool = mp.Pool(processes=int(cpu_count/2)) for m in range(len(to_hlfx_list)): pool.apply_async(func=hlfx, args=(to_hlfx_list[m], data), error_callback=err_call_back) pool.close() pool.join() def bridge(): print(f'bridge is {os.getpid()}, now is {dt.now()},开盘了') stocks = xtdata.get_stock_list_in_sector('沪深A股') seq = xtdata.subscribe_whole_quote(stocks, callback=prepare) run(seq) def job_func(): print(f"Job started at {dt.now()}") # 创建子进程 p = mp.Process(target=bridge) # 启动子进程 p.start() # 等待子进程结束 p.join() print(f"Job finished at {dt.now()}") if __name__ == '__main__': print(f'总进程pid:{os.getpid()}') mp.freeze_support() pus = psutil.Process() # pus.cpu_affinity([0, 1, 2, 3, 4, 5, 6, 7]) path = r'c:\\qmt\\userdata_mini' # 生成session id 整数类型 同时运行的策略不能重复 session_id = int(time.time()) xt_trader = XtQuantTrader(path, session_id) # 创建资金账号为 800068 的证券账号对象 acc = StockAccount('920000207040', 'SECURITY') # 创建交易回调类对象,并声明接收回调 callback = MyXtQuantTraderCallback() xt_trader.register_callback(callback) # 启动交易线程 xt_trader.start() # 建立交易连接,返回0表示连接成功 connect_result = xt_trader.connect() print('建立交易连接,返回0表示连接成功', connect_result) # 对交易回调进行订阅,订阅后可以收到交易主推,返回0表示订阅成功 subscribe_result = xt_trader.subscribe(acc) print('对交易回调进行订阅,订阅后可以收到交易主推,返回0表示订阅成功', subscribe_result) job_func() scheduler = BlockingScheduler() scheduler.add_job(func=job_func, trigger='cron', day_of_week='0-4', hour='09', minute='25', timezone="Asia/Shanghai", max_instances=5) # # scheduler.add_job(func=job_func, trigger='cron', day_of_week='0-4', hour='13', minute='00', # # timezone="Asia/Shanghai") try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass