# coding=utf-8 from xtquant import xtdata from datetime import datetime as dt import pandas as pd from sqlalchemy import create_engine path = 'c:\\qmt\\userdata_mini' if __name__ == '__main__': fre = '1d' stocks = xtdata.get_stock_list_in_sector('沪深A股') print(stocks, '\n') stocks.sort() # df_data = xtdata.get_local_data(field_list=[], stock_code=stocks, start_time='', end_time='', # period='1d', count=-1) # print(df_data) for s in stocks[0:4]: print(s) cq = xtdata.get_divid_factors(s, start_time='19910101', end_time='20130115') print(cq) df_data = xtdata.get_local_data(field_list=[], stock_code=[s], start_time='', end_time='', period='1d', count=-1, dividend_type='back') df = pd.concat([df_data[i].T for i in ['time', 'open', 'high', 'low', 'close', 'volume', 'amount']], axis=1) df.columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'amount'] df['time'] = df['time'].apply(lambda x: dt.fromtimestamp(x / 1000.0)) # print(df) df['time'] = pd.to_datetime(df['time'], unit='ms') df['time'] = pd.to_datetime(df['time'], format='%Y-%m-%d') df.reset_index(drop=True, inplace=True) # df['time'] = df['time'] + timedelta(hours=8) print(df)