import pandas as pd from jqdatasdk import * auth('18616891214', 'Ea?*7f68nD.dafcW34d!') import threading from sqlalchemy import create_engine import pymysql from datetime import datetime as dt start = dt.now() # 确定级别 fre = '30m' # 连接数据库 db = pymysql.connect(host='localhost', user='root', port=3307, password='r6kEwqWU9!v3', database='hlfx') # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8') engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8') # 获取所有表名——确定计算范围 cursor = db.cursor() cursor.execute("show tables like '%%%s%%' "% fre) # stocks = [tuple[0] for tuple in cursor.fetchall()] stocks = list(get_all_securities(['stock'], date='2021-12-31').index) # stocks = stocks[0:500] print(dt.now(), 'stocks范围已获取!') # 获取各stock的去包含dataframe stk = locals() for stock in stocks: try: stk[stock] = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (stock, fre), engine2) except BaseException: continue print(dt.now(), '数据库数据已赋值!') thd = threading.local() def qbh_hlfx(stocks, df): for stock in stocks: try: # thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL')) thd.df_day = stk[stock] thd.get_bars = df.loc[stock] stk_len = len(thd.df_day) # 先处理去包含 for x in thd.get_bars.index: # 不包含 if (thd.df_day.iloc[-1, 3] > thd.get_bars.loc[x, 'high'] and thd.df_day.iloc[-1, 4] > thd.get_bars.loc[x, 'low']) \ or (thd.df_day.iloc[-1, 3] < thd.get_bars.loc[x, 'high'] and thd.df_day.iloc[-1, 4] < thd.get_bars.loc[x, 'low']): thd.df_day = pd.concat([thd.df_day, thd.get_bars.iloc[[x]]], ignore_index=True) # 包含 else: # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']): # 左高,下降 if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]: thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_bars.loc[x, 'high']) thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_bars.loc[x, 'low']) else: # 右高,上升 thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_bars.loc[x, 'high']) thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_bars.loc[x, 'low']) # return thd.df_day if len(thd.df_day.index) > 2: # 寻找顶底分型 for x in range(stk_len, len(thd.df_day.index)): m = x - 1 # 底 if ((thd.df_day.loc[x,'high']>thd.df_day.loc[x-1,'high']) and (thd.df_day.loc[x-2,'high']>thd.df_day.loc[x-1,'high'])): # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) thd.df_day.loc[x, 'HL'] = 'L*' while m: if thd.df_day.loc[m, 'HL'] == 'H': if(x-m) > 3: thd.df_day.loc[x, 'HL'] = 'L' if x == len(thd.df_day.index) - 1: print(stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!') break elif (thd.df_day.loc[m, 'HL'] == 'L' ): if thd.df_day.loc[x-1, 'low'] < thd.df_day.loc[m-1, 'low']: # 前一个为底,且中间存在不包含 or 更低的底 thd.df_day.loc[x, 'HL'] = 'L' if x == len(thd.df_day.index) - 1: # pass print(stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],'中继后的底————买吗?!') break else: break m = m-1 # 顶 elif ((thd.df_day.loc[x,'high'] 3: thd.df_day.loc[x, 'HL'] = 'H' if x == len(thd.df_day.index) - 1: # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!') pass thd.df_day.loc[x, 9] = thd.df_day.loc[x, 'close'] - thd.df_day.loc[m, 'close'] break elif (thd.df_day.loc[m, 'HL'] == 'H'): if thd.df_day.loc[x-1, 'high'] > thd.df_day.loc[m-1, 'high']: # 前一个为顶,且中间存在不包含 or 更高的顶 thd.df_day.loc[x, 'HL'] = 'H' if x == len(thd.df_day.index) - 1: pass # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!') break break m = m-1 else: thd.df_day.loc[x, 'HL'] = '-' except BaseException: continue while True: df = get_bars(stocks, count=20, unit=fre, fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True) print(dt.now(), 'get_bars 成功') # strattime = dt.now() qbh_hlfx(stocks, df) # endtime = dt.now() # end = dt.now() # print('单次时长为:', (endtime - strattime).seconds, '\n', '全时长为:', (end - start).seconds)