import multiprocessing as mp import pandas as pd import pymysql from sqlalchemy import create_engine from datetime import datetime as dt import datetime # auth('18616891214', 'Ea?*7f68nD.dafcW34d!') def hlfx(stocks,fre,table_list): engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8') engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8') for stock in stocks: # print(stock) if ('stk%s_%s' % (stock, fre)) in table_list: # 有历史数据 index_len = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 0] # 注意修改time delta startdate = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 1] # startdate = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 1] + datetime.timedelta(minutes= 5) get_price = pd.read_sql_query( 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine) get_price = get_price.loc[get_price['date'] > startdate] df_day = pd.read_sql_query( 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (stock, fre), engine2) if index_len > 2: # 先处理去包含 for i in get_price.index: # 不包含 if (df_day.iloc[-1, 3] > get_price.loc[i, 'high'] and df_day.iloc[-1, 4] > get_price.loc[i, 'low']) \ or (df_day.iloc[-1, 3] < get_price.loc[i, 'high'] and df_day.iloc[-1, 4] < get_price.loc[i, 'low']): df_day = pd.concat([df_day, get_price.loc[[i]]], ignore_index=True) # print(df_day) # 包含 else: # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']): # 左高,下降 if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]: df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price.loc[i, 'high']) df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price.loc[i, 'low']) else: # 右高,上升 df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price.loc[i, 'high']) df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price.loc[i, 'low']) # 寻找顶底分型 if len(df_day.index) > 2: # 寻找顶底分型 for x in range(index_len, len(df_day.index)): m = x - 1 # 底 if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])): # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) df_day.loc[x, 'HL'] = 'L*' while m: if df_day.loc[m, 'HL'] == 'H': if (x - m) > 3: df_day.loc[x, 'HL'] = 'L' if x == len(df_day.index) - 1: # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], '买买买买买!!') pass break elif (df_day.loc[m, 'HL'] == 'L'): if df_day.loc[x - 1, 'low'] < df_day.loc[m - 1, 'low']: # 前一个为底,且中间存在不包含 or 更低的底 df_day.loc[x, 'HL'] = 'L' if x == len(df_day.index) - 1: pass # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], # '中继后的底————买吗?!') break else: break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'L' # 顶 elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])): # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) df_day.loc[x, 'HL'] = 'H*' while m: if df_day.loc[m, 'HL'] == 'L': if x - m > 3: df_day.loc[x, 'HL'] = 'H' if x == len(df_day.index) - 1: # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!') pass break elif (df_day.loc[m, 'HL'] == 'H'): if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']: # 前一个为顶,且中间存在不包含 or 更高的顶 df_day.loc[x, 'HL'] = 'H' if x == len(df_day.index) - 1: pass # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!') break break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'H' else: df_day.loc[x, 'HL'] = '-' # 更新数据库 df_day[index_len + 1:].to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True, if_exists='append') else: df_day = pd.concat([df_day, get_price], ignore_index=True) df_day[index_len + 1:].to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True, if_exists='append') else: # 没有历史数据表 df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL')) get_price = pd.read_sql_query( 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine) # 先处理去包含 for i in get_price.index: if i == 0 or i == 1: df_day = pd.concat([df_day, get_price.iloc[[i]]], ignore_index=True) # 不包含 elif (df_day.iloc[-1, 3] > get_price.loc[i, 'high'] and df_day.iloc[-1, 4] > get_price.loc[i, 'low']) \ or (df_day.iloc[-1, 3] < get_price.loc[i, 'high'] and df_day.iloc[-1, 4] < get_price.loc[i, 'low']): df_day = pd.concat([df_day, get_price.loc[[i]]], ignore_index=True) # 包含 else: # 左高,下降 if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]: df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price.loc[i, 'high']) df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price.loc[i, 'low']) else: # 右高,上升 df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price.loc[i, 'high']) df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price.loc[i, 'low']) if len(df_day.index) > 2: # 寻找顶底分型 for x in range(2, len(df_day.index)): m = x - 1 # 底 if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])): # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) df_day.loc[x, 'HL'] = 'L*' while m: if df_day.loc[m, 'HL'] == 'H': if (x - m) > 3: df_day.loc[x, 'HL'] = 'L' if x == len(df_day.index) - 1: pass # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], '买买买买买!!') break elif (df_day.loc[m, 'HL'] == 'L'): if df_day.loc[x - 1, 'low'] < df_day.loc[m - 1, 'low']: # 前一个为底,且中间存在不包含 or 更低的底 df_day.loc[x, 'HL'] = 'L' if x == len(df_day.index) - 1: pass # print(stock, '$$$$$$$', '\n', df_day.loc[x, 'date'], '中继后的底————买吗?!') break else: break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'L' # 顶 elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and ( df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])): # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])): # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True) df_day.loc[x, 'HL'] = 'H*' while m: if df_day.loc[m, 'HL'] == 'L': if x - m > 3: df_day.loc[x, 'HL'] = 'H' if x == len(df_day.index) - 1: # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!') pass break elif (df_day.loc[m, 'HL'] == 'H'): if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']: # 前一个为顶,且中间存在不包含 or 更高的顶 df_day.loc[x, 'HL'] = 'H' if x == len(df_day.index) - 1: pass # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!') break break m = m - 1 if m == 0: df_day.loc[x, 'HL'] = 'H' else: df_day.loc[x, 'HL'] = '-' # 更新数据库 df_day.to_sql('stk%s_%s' % (stock, fre), con=engine2, index=True, if_exists='append') if __name__ == '__main__': engine_stocks_list = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8') # stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index) stocks = pd.read_sql_query( 'select securities from stocks_list', engine_stocks_list) stocks = stocks.iloc[-1, 0] stocks = stocks.split(",") print(len(stocks), type(stocks), stocks) # stocks = stocks[0:1000] start = dt.now() # 确定级别 # 注意修改time delta # fre = '30m' for fre in ['1d', '30m']: start = dt.now() print(fre) # 连接数据库 db = pymysql.connect(host='localhost', user='root', port=3307, password='r6kEwqWU9!v3', database='hlfx') cursor = db.cursor() cursor.execute("show tables like '%%%s%%' " % fre) table_list = [tuple[0] for tuple in cursor.fetchall()] print('取得 table_list %s' % fre) step = 800 mp_list = [] print(len(stocks)) for i in range(0, len(stocks), step): p = mp.Process(target=hlfx, args=(stocks[i:i + step], fre, table_list, )) mp_list.append(p) p.start() for processing in mp_list: processing.join() # db.close() end = dt.now() print('总时长:', (end - start).seconds)