123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 |
- # coding:utf-8
- from datetime import datetime as dt
- import numpy as np
- import os
- import pandas as pd
- import time
- from sqlalchemy import create_engine, text
- from jqdatasdk import *
- import pymysql
- import multiprocessing as mp
- from multiprocessing import freeze_support
- import math
- import talib as ta
- from xtquant import xtdata
- import os
- import traceback
- from apscheduler.schedulers.blocking import BlockingScheduler
- import psutil
- import random
- import logging
- pd.set_option('display.max_columns', None) # 设置显示最大行
- def err_call_back(err):
- print(f'出错啦~ error:{str(err)}')
- traceback.print_exc()
- def myself_kdj(df):
- low_list = df['low_back'].rolling(9, min_periods=9).min()
- low_list.fillna(value=df['low_back'].expanding().min(), inplace=True)
- high_list = df['high_back'].rolling(9, min_periods=9).max()
- high_list.fillna(value=df['high_back'].expanding().max(), inplace=True)
- rsv = (df['close_back'] - low_list) / (high_list - low_list) * 100
- df['k'] = pd.DataFrame(rsv).ewm(com=2).mean()
- df['d'] = df['k'].ewm(com=2).mean()
- df['j'] = 3 * df['k'] - 2 * df['d']
- return df
- # macd指标
- def get_macd_data(data, short=0, long1=0, mid=0):
- if short == 0:
- short = 12
- if long1 == 0:
- long1 = 26
- if mid == 0:
- mid = 9
- data['sema'] = pd.Series(data['close_back']).ewm(span=short).mean()
- data['lema'] = pd.Series(data['close_back']).ewm(span=long1).mean()
- data.fillna(0, inplace=True)
- data['dif'] = data['sema'] - data['lema']
- data['dea'] = pd.Series(data['dif']).ewm(span=mid).mean()
- data['macd'] = 2 * (data['dif'] - data['dea'])
- data.fillna(0, inplace=True)
- # return data[['dif', 'dea', 'macd']]
- # rsi指标
- def get_ris(data):
- data["rsi_6"] = ta.RSI(data['close_back'], timeperiod=6)
- data["rsi_12"] = ta.RSI(data['close_back'], timeperiod=12)
- data["rsi_24"] = ta.RSI(data['close_back'], timeperiod=24)
- def get_bias(data):
- # 计算方法:
- # bias指标
- # N期BIAS=(当日收盘价-N期平均收盘价)/N期平均收盘价*100%
- data['bias_6'] = (data['close_back'] - data['close_back'].rolling(6, min_periods=1).mean()) / \
- data['close_back'].rolling(6, min_periods=1).mean() * 100
- data['bias_12'] = (data['close_back'] - data['close_back'].rolling(12, min_periods=1).mean()) / \
- data['close_back'].rolling(12, min_periods=1).mean() * 100
- data['bias_24'] = (data['close_back'] - data['close_back'].rolling(24, min_periods=1).mean()) / \
- data['close_back'].rolling(24, min_periods=1).mean() * 100
- data['bias_6'] = round(data['bias_6'], 2)
- data['bias_12'] = round(data['bias_12'], 2)
- data['bias_24'] = round(data['bias_24'], 2)
- def get_wilr(data):
- # 威廉指标
- # 建议用talib库的WILLR方法,亲测有用
- data['willr'] = ta.WILLR(data['high_back'], data['low_back'], data['close_back'], timeperiod=14)
- def get_hlfx(data):
- Trading_signals = 0
- data_temp = data[['time', 'open_back', 'close_back', 'high_back', 'low_back', 'dif', 'dea', 'macd']]
- data_temp.columns = ['time', 'open', 'close', 'high', 'low', 'dif', 'dea', 'macd']
- df_day = pd.DataFrame(columns=['time', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'])
- # 先处理去包含
- for i in data_temp.index:
- if i == 0 or i == 1:
- df_day = pd.concat([df_day, data_temp.iloc[[i]]], ignore_index=True)
- # 不包含
- elif (df_day.iloc[-1, 3] > data_temp.loc[i, 'high']
- and df_day.iloc[-1, 4] > data_temp.loc[i, 'low']) \
- or (df_day.iloc[-1, 3] < data_temp.loc[i, 'high']
- and df_day.iloc[-1, 4] < data_temp.loc[i, 'low']):
- df_day = pd.concat([df_day, data_temp.loc[[i]]], ignore_index=True)
- # 包含
- else:
- # 左高,下降
- if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
- df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], data_temp.loc[i, 'high'])
- df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], data_temp.loc[i, 'low'])
- else:
- # 右高,上升
- df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], data_temp.loc[i, 'high'])
- df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], data_temp.loc[i, 'low'])
- # print('111', df_day, data_temp)
- if len(df_day.index) > 2:
- # 寻找顶底分型
- for x in range(2, len(df_day.index)):
- m = x - 1
- # 底
- # 符合底分型形态,且第2、3根k线是阳线
- if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and
- (df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
- # and df_day.loc[x, 'close'] > df_day.loc[x, 'open'] and \
- # df_day.loc[x - 1, 'close'] > df_day.loc[x - 1, 'open']:
- df_day.loc[x, 'HL'] = 'L*'
- while m:
- if df_day.loc[m, 'HL'] in ['H', 'HH', 'H*']:
- if (x - m) > 3:
- # 成笔——>L
- df_day.loc[x, 'HL'] = 'L'
- # 产生信号,进入hlfx_pool
- if x == len(df_day.index) - 1:
- Trading_signals = 1
- else:
- # 不成笔 次级别中枢,保持L* 修订原H为H*
- df_day.loc[m, 'HL'] = 'H*'
- break
- elif df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']:
- if df_day.loc[m - 1, 'low'] > df_day.loc[x - 1, 'low']:
- # 前一个为底更高,且中间不存在更低的底
- df_day.loc[x, 'HL'] = 'L'
- df_day.loc[m, 'HL'] = '-'
- # 产生信号,进入hlfx_pool
- if x == len(df_day.index) - 1:
- Trading_signals = 1
- # 获得MACD,判断MACD判断背驰
- x_macd_dif, x_macd_dea, x_macd_macd = data_temp.loc[x, 'dif'], data_temp.loc[x, 'dea'], \
- data_temp.loc[x, 'macd']
- m_macd_dif, m_macd_dea, m_macd_macd = data_temp.loc[m, 'dif'], data_temp.loc[m, 'dea'], \
- data_temp.loc[m, 'macd']
- # MACD底背驰
- if m_macd_dif < x_macd_dif:
- # 次级别背驰底->LL
- df_day.loc[x, 'HL'] = 'LL'
- break
- else:
- # 前底更低,本底无效
- df_day.loc[x, 'HL'] = '-'
- break
- m = m - 1
- if m == 0:
- df_day.loc[x, 'HL'] = 'L'
- # 顶
- elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
- df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])):
- df_day.loc[x, 'HL'] = 'H*'
- while m:
- if df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']:
- if x - m > 3:
- # 成笔->H
- df_day.loc[x, 'HL'] = 'H'
- # 产生信号,进入hlfx_pool
- if x == len(df_day.index) - 1:
- Trading_signals = 2
- else:
- # 不成笔 次级别中枢,保持H* 修订原L为L*
- df_day.loc[m, 'HL'] = 'L*'
- break
- elif df_day.loc[m, 'HL'] in ['H', 'HH', 'H*']:
- if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
- # 前一个为顶,且中间存在不包含 or 更高的顶
- df_day.loc[x, 'HL'] = 'H'
- df_day.loc[m, 'HL'] = '-'
- # 产生信号,进入hlfx_pool
- if x == len(df_day.index) - 1:
- Trading_signals = 2
- # 获得MACD,判断MACD判断背驰
- x_macd_dif, x_macd_dea, x_macd_macd = data_temp.loc[x, 'dif'], data_temp.loc[x, 'dea'], \
- data_temp.loc[x, 'macd']
- m_macd_dif, m_macd_dea, m_macd_macd = data_temp.loc[m, 'dif'], data_temp.loc[m, 'dea'], \
- data_temp.loc[m, 'macd']
- # MACD顶背驰
- if x_macd_dif < m_macd_dif:
- # 次级别背驰底->HH
- df_day.loc[x, 'HL'] = 'HH'
- break
- else:
- # 前顶更高,本顶无效
- df_day.loc[x, 'HL'] = '-'
- break
- m = m - 1
- if m == 0:
- df_day.loc[x, 'HL'] = 'H'
- else:
- df_day.loc[x, 'HL'] = '-'
- df_temp = df_day[['time', 'HL']]
- return df_temp, Trading_signals
- def tech_anal(stocks, hlfx_pool, hlfx_pool_daily, err_list):
- try:
- print(f'{dt.now()}开始循环计算! MyPid is {os.getpid()},父进程是{os.getppid()},池子长度为{len(stocks)}')
- m = 0
- for stock in stocks:
- engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_whole?charset=utf8')
- engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
- # print(stock)
- try:
- df = pd.read_sql_table('%s_1d' % stock, con=engine.connect())
- df.dropna(axis=0, how='any')
- engine.dispose()
- except BaseException:
- print(f'{stock}读取有问题')
- traceback.print_exc()
- pass
- else:
- if len(df) != 0:
- try:
- get_macd_data(df)
- get_ris(df)
- get_bias(df)
- get_wilr(df)
- df_temp, T_signals = get_hlfx(df)
- df = pd.merge(df, df_temp, on='time', how='left')
- df['HL'].fillna(value='-', inplace=True)
- df = df.reset_index(drop=True)
- except BaseException:
- print(f'{stock}计算指标有问题')
- # print(stock, '\n', df[['open_front', 'HL']])
- pass
- try:
- df = df.replace([np.inf, -np.inf], np.nan)
- df.to_sql('%s_1d' % stock, con=engine_tech, index=False, if_exists='replace')
- # engine_tech.dispose()
- # with engine.connect() as con:
- # con.execute("ALTER TABLE `%s_1d` ADD PRIMARY KEY (`time`);" % stock)
- except BaseException:
- print(f'{stock}存储有问题')
- traceback.print_exc()
- err_list.append(stock)
- pass
- else:
- # print(f"{stock} 成功!")
- m += 1
- else:
- err_list.append(stock)
- print(f'{stock}数据为空')
- if stock in hlfx_pool and T_signals == 2:
- hlfx_pool.remove(stock)
- elif stock not in hlfx_pool and T_signals == 1:
- hlfx_pool.append(stock)
- hlfx_pool_daily.append(stock)
- except Exception as e:
- logging.exception("子进程异常:", os.getpid(), e)
- print(f'{dt.now()}, Pid:{os.getpid()}已经完工了,应处理{len(stocks)},共计算{m}支个股')
- def split_list(lst, num_parts):
- avg = len(lst) // num_parts
- rem = len(lst) % num_parts
- partitions = []
- start = 0
- for i in range(num_parts):
- end = start + avg + (1 if i < rem else 0)
- partitions.append(lst[start:end])
- start = end
- return partitions
- def ind():
- fre = '1d'
- logging.basicConfig(filename='error.log', level=logging.ERROR)
- logger = mp.log_to_stderr()
- logger.setLevel(logging.DEBUG)
- logger.warning('doomed')
- # mp.log_to_stderr()
- sttime = dt.now()
- num_cpus = mp.cpu_count()
- engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
- # stocks = xtdata.get_stock_list_in_sector('沪深A股')
- stocks = pd.read_sql_query(
- text("select securities from %s" % 'stocks_list'), engine_hlfx_pool.connect()).iloc[-1, 0].split(",")
- print(len(stocks))
- # stocks.sort()
- # print(type(stocks))
- random.shuffle(stocks)
- print(type(stocks))
- partitions = split_list(stocks, num_cpus)
- print(len(partitions))
- exit()
- # random.shuffle(stocks)
- err_list = mp.Manager().list()
- hlfx_pool = mp.Manager().list()
- hlfx_pool_daily = mp.Manager().list()
- hlfx_pool.extend(pd.read_sql_query(
- text("select value from %s" % fre), engine_hlfx_pool.connect()).iloc[-1, 0].split(","))
- engine_hlfx_pool.dispose()
- pool = mp.Pool(processes=int(num_cpus))
- step = math.ceil(len(stocks) / num_cpus)
- # pool = mp.Pool(processes=20)
- # step = math.ceil(len(stocks) / 20)
- # step = 10000
- # tech_anal(stocks, hlfx_pool)
- for lst in partitions:
- pool.apply_async(func=tech_anal, args=(lst, hlfx_pool, hlfx_pool_daily, err_list,),
- error_callback=err_call_back)
- # time.sleep(3)
- pool.close()
- pool.join()
- print(f'当日信号:{len(hlfx_pool_daily)},持续检测为:{len(hlfx_pool)}')
- print(len(err_list), err_list)
- results_list = ','.join(set(hlfx_pool))
- results_list_daily = ','.join(set(hlfx_pool_daily))
- # 存档入库
- db_pool = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='hlfx_pool')
- cursor_pool = db_pool.cursor()
- sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
- cursor_pool.execute(sql)
- db_pool.commit()
- # 存档入库daily_1d
- db_pool2 = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='hlfx_pool')
- cursor_pool2 = db_pool2.cursor()
- sql2 = "INSERT INTO daily_%s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'),
- results_list_daily)
- cursor_pool2.execute(sql2)
- db_pool2.commit()
- edtime = dt.now()
- print(edtime - sttime)
- if __name__ == '__main__':
- # pus = psutil.Process()
- # pus.cpu_affinity([12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
- freeze_support()
- ind()
- # scheduler = BlockingScheduler()
- # scheduler.add_job(func=ind, trigger='cron', day_of_week='0-4', hour='20', minute='30',
- # timezone="Asia/Shanghai", max_instances=10)
- # try:
- # scheduler.start()
- # except (KeyboardInterrupt, SystemExit):
- # pass
|