update_data_tosql.py 1.2 KB

1234567891011121314151617181920212223242526272829303132
  1. from jqdatasdk import *
  2. auth('18616891214','Ea?*7f68nD.dafcW34d!')
  3. from sqlalchemy import create_engine
  4. import pandas as pd
  5. from datetime import datetime as dt
  6. import datetime
  7. stocks = list(get_all_securities(['stock'], date='2022-02-25').index)
  8. engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  9. fre = '30m'
  10. print('ready to write to mysql')
  11. for stock in stocks[0:10]:
  12. print(stock)
  13. index_len = pd.read_sql_table('stk%s_%s' % (stock[:6], fre), con=engine).iloc[-1, 0]
  14. # 注意修改time delta
  15. startdate = pd.read_sql_table('stk%s_%s' % (stock[:6], fre), con=engine).iloc[-1, 1] + datetime.timedelta(minutes=5)
  16. print(startdate)
  17. df_stock = get_price(stock, start_date=startdate, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
  18. frequency=fre, fields=['open', 'close', 'high', 'low', 'volume', 'money'], skip_paused=False,
  19. fq='pre', count=None, panel=False)
  20. df_stock = df_stock.dropna(axis=0)
  21. df_stock.reset_index(inplace=True)
  22. df_stock.rename(columns={'index': 'date'}, inplace=True)
  23. df_stock.index = df_stock.index + index_len + 1
  24. df_stock.to_sql('stk%s_%s' % (stock[:6], fre), con=engine, index=True, if_exists='append')