futures_backtrader.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. import numpy as np
  2. from sqlalchemy import create_engine
  3. import pandas as pd
  4. import pymysql
  5. import backtrader as bt
  6. import backtrader.indicators as btind
  7. import datetime
  8. import threading
  9. from datetime import datetime as dt
  10. import multiprocessing as mp
  11. from backtrader.feeds import PandasData
  12. # import multiprocessing
  13. import matplotlib
  14. class MyPandasData(PandasData):
  15. lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
  16. , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
  17. params = (('change_pct', 7),
  18. ('net_amount_main', 8),
  19. ('net_pct_main', 9),
  20. ('net_amount_xl', 10),
  21. ('net_pct_xl', 11),
  22. ('net_amount_l', 12),
  23. ('net_pct_l', 13),
  24. ('net_amount_m', 14),
  25. ('net_pct_m', 15),
  26. ('net_amount_s', 16),
  27. ('net_pct_s', 17),
  28. )
  29. class TestStrategy(bt.Strategy):
  30. params = (
  31. ("num", 3),
  32. ('Volatility', 0),
  33. ('rate', 5),# 注意要有逗号!!
  34. )
  35. def log(self, txt, dt=None):
  36. ''' Logging function for this strategy'''
  37. dt = dt or self.datas[0].datetime.date(0)
  38. # print('%s, %s' % (dt.isoformat(), txt))
  39. def __init__(self):
  40. # self.num = num
  41. # self.Volatility = Volatility/100
  42. # Keep a reference to the "close" line in the data[0] dataseries
  43. self.dataclose = self.datas[0].close
  44. self.dataopen = self.datas[0].open
  45. self.high = self.datas[0].high
  46. self.low = self.datas[0].low
  47. self.volume = self.datas[0].volume
  48. self.change_pct = self.datas[0].change_pct
  49. self.net_amount_main = self.datas[0].net_amount_main
  50. self.net_pct_main = self.datas[0].net_pct_main
  51. self.net_amount_xl = self.datas[0].net_amount_xl
  52. self.net_pct_xl = self.datas[0].net_pct_xl
  53. self.net_amount_l = self.datas[0].net_amount_l
  54. self.net_pct_l = self.datas[0].net_pct_l
  55. self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
  56. self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
  57. self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
  58. def notify_order(self, order):
  59. """
  60. 订单状态处理
  61. Arguments:
  62. order {object} -- 订单状态
  63. """
  64. if order.status in [order.Submitted, order.Accepted]:
  65. # 如订单已被处理,则不用做任何事情
  66. return
  67. # 检查订单是否完成
  68. if order.status in [order.Completed]:
  69. if order.isbuy():
  70. self.buyprice = order.executed.price
  71. self.buycomm = order.executed.comm
  72. self.bar_executed = len(self)
  73. # 订单因为缺少资金之类的原因被拒绝执行
  74. elif order.status in [order.Canceled, order.Margin, order.Rejected]:
  75. pass
  76. # self.log('Order Canceled/Margin/Rejected')
  77. # 订单状态处理完成,设为空
  78. self.order = None
  79. def notify_trade(self, trade):
  80. """
  81. 交易成果
  82. Arguments:
  83. trade {object} -- 交易状态
  84. """
  85. if not trade.isclosed:
  86. return
  87. # 显示交易的毛利率和净利润
  88. # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
  89. def next(self):
  90. # print(self.num,self.Volatility)
  91. # Simply log the closing price of the series from the reference
  92. # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
  93. # and (self.sma5[-1] < self.sma10[-1])
  94. # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3) \
  95. # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
  96. if len(self) > self.params.num:
  97. lowest = np.min(self.low.get(size=self.params.num))
  98. vola = self.params.Volatility/100
  99. rate = self.params.rate/100
  100. # print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
  101. if (self.dataclose[0] > self.dataopen[0]) and ((lowest*(1-vola)) < self.low[0] < (lowest*(1+vola)))\
  102. and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
  103. and (not self.position) and (self.sma5[0] > self.sma10[0]) \
  104. and (self.net_pct_main[-2] > 5) \
  105. and (self.change_pct[0] > 5):
  106. # self.log('BUY CREATE, %.2f' % self.dataclose[0])
  107. self.order = self.buy()
  108. elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0]\
  109. or (self.dataclose[0] > (self.sma5[0] * (1+rate))):
  110. self.order = self.close()
  111. # self.log('Close, %.2f' % self.dataclose[0])
  112. def stop(self):
  113. # pass
  114. self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
  115. def backtrader(table_list, result, result_change,result_change_fall, num, Volatility, rate, err_list):
  116. engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks_data?charset=utf8')
  117. for stock in table_list:
  118. # print(stock)
  119. stk_df = pd.read_sql_table(stock, engine)
  120. stk_df.date = pd.to_datetime(stk_df.date)
  121. if len(stk_df) > 60:
  122. cerebro = bt.Cerebro()
  123. cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
  124. cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
  125. data = MyPandasData(dataname=stk_df,
  126. fromdate=datetime.datetime(2010,1,1),
  127. todate=datetime.datetime(2022, 10, 30),
  128. datetime='date',
  129. open='open',
  130. close='close',
  131. high='high',
  132. low='low',
  133. volume='volume',
  134. change_pct='change_pct',
  135. net_amount_main='net_amount_main',
  136. net_pct_main='net_pct_main',
  137. net_amount_xl='net_amount_xl',
  138. net_pct_xl='net_pct_xl',
  139. net_amount_l='net_amount_l',
  140. net_pct_l='net_pct_l',
  141. net_amount_m='net_amount_m',
  142. net_pct_m='net_pct_m',
  143. net_amount_s='net_amount_s',
  144. net_pct_s='net_pct_s',
  145. )
  146. # print('取值完成')
  147. cerebro.adddata(data, name=stock)
  148. cerebro.broker.setcash(100000.0)
  149. cerebro.broker.setcommission(0.005)
  150. cerebro.addanalyzer(bt.analyzers.PyFolio)
  151. # 策略执行前的资金
  152. # print('启动资金: %.2f' % cerebro.broker.getvalue())
  153. try:
  154. # 策略执行
  155. cerebro.run()
  156. except IndexError:
  157. err_list.append(stock)
  158. else:
  159. if cerebro.broker.getvalue() > 100000.0:
  160. # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
  161. result_change.append((cerebro.broker.getvalue()/10000-1))
  162. result.append(stock)
  163. else:
  164. result_change_fall.append((1-cerebro.broker.getvalue() / 10000))
  165. # print('aaaaaaaaaaa')
  166. # cerebro.plot()
  167. if __name__ == '__main__':
  168. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8', poolclass=NullPool)
  169. # stocks = pd.read_sql_query(
  170. # 'select value from MA5_1d', engine_hlfx)
  171. fre = '1d'
  172. db = pymysql.connect(host='localhost',
  173. user='root',
  174. port=3307,
  175. password='r6kEwqWU9!v3',
  176. database='stocks_data')
  177. cursor = db.cursor()
  178. cursor.execute("show tables like '%%%s%%' " % fre)
  179. table_list = [tuple[0] for tuple in cursor.fetchall()]
  180. # print(table_list)
  181. # table_list = table_list[0:500]
  182. df = pd.DataFrame(columns=['周期', '波动率', '乖离率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
  183. '平均亏损', '最大亏损', '最小亏损'])
  184. sttime = dt.now()
  185. for num in range(20, 180, 10):
  186. for Volatility in range(10, 20, 1):
  187. for rate in range(5, 20, 1):
  188. step = 400
  189. thread_list = []
  190. result = mp.Manager().list()
  191. result_change = mp.Manager().list()
  192. result_change_fall = mp.Manager().list()
  193. err_list = mp.Manager().list()
  194. print(f'{num}天波动率为{Volatility}% 乖离率为{rate}%')
  195. for i in range(0, len(table_list), step):
  196. stattime = dt.now()
  197. # thd = threading.local()
  198. # print(i)
  199. p = mp.Process(target=backtrader, args=(table_list[i:i + step], result,
  200. result_change, result_change_fall, num, Volatility, rate,
  201. err_list))
  202. thread_list.append(p)
  203. # p.start()
  204. # p.join()
  205. # print(thread_list)
  206. for thread in thread_list:
  207. thread.start()
  208. for thread in thread_list:
  209. thread.join()
  210. print(f'以{num}内最低值波动{Volatility}为支撑、{rate}%为乖离率,结果状态为:')
  211. print('正盈利的个股为:', len(result_change), '成功率为:', len(result)/len(table_list))
  212. print(f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
  213. print(
  214. f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
  215. endtime = dt.now()
  216. df.loc[len(df)] = [num, Volatility, rate, len(result), len(result)/len(table_list), np.sum(result_change),
  217. np.mean(result_change), np.max(result_change), np.min(result_change),
  218. np.sum(result_change_fall), np.mean(result_change_fall),
  219. np.min(result_change_fall), np.max(result_change_fall)]
  220. print(df)
  221. print('每轮耗时:', endtime-stattime)
  222. edtime = dt.now()
  223. print('总耗时:', edtime - sttime)
  224. df.to_csv('/Users/daniel/Documents/策略穷举2.csv', index=True)