1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- from jqdatasdk import *
- from datetime import datetime as dt
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
- engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- engine_data = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks_data?charset=utf8')
- # stocks_List = ','.join(set(stocks))
- # db_stocks_list = pymysql.connect(host='localhost',
- # user='root',
- # port=3307,
- # password='r6kEwqWU9!v3',
- # database='hlfx_pool')
- # cursor_stock_list = db_stocks_list.cursor()
- # sql = "INSERT INTO stocks_list (date,securities) VALUES('%s','%s')" % (dt.today().strftime('%Y-%m-%d'), stocks_List)
- # cursor_stock_list.execute(sql)
- # db_stocks_list.commit()
- # db_stocks_list.close()
- fre = '1d'
- print('ready to write to mysql %s' % fre)
- for stock in stocks:
- print(stock, fre)
- starttime ='2010-01-04'
- # endtime = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine).iloc[-1, 1]
- df_stock = get_price(stock, start_date=starttime, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
- frequency=fre, fields=['open', 'close', 'high', 'low', 'volume', 'money'],
- skip_paused=False,
- fq='pre', count=None, panel=False)
- df_stock.index.name = 'date'
- # print(df_stock)
- # print(starttime,endtime)
- df_money = get_money_flow(stock, start_date=starttime, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
- fields=None, count=None)
- df_money = df_money.drop(columns=['sec_code'])
- # df_money.to_csv('/Users/daniel/Downloads/000002.csv')
- # print(df_money)
- df_stock = pd.merge(df_stock, df_money, how='outer', left_index=False , on='date')
- # df_stock.to_csv('D:\001_QuantTrade\Result.csv')
- df_stock = df_stock.dropna(axis=0)
- df_stock.reset_index(inplace=True)
- df_stock.rename(columns={'index': 'date'}, inplace=True)
- df_stock.to_sql('stk%s_%s' % (stock, fre), con=engine_data, index=True, if_exists='replace')
- # with engine.connect() as con:
- # con.execute("ALTER TABLE `stk%s_%s` ADD PRIMARY KEY (`date`);" % (stock, fre))
- print(df_stock)
|