real_time_order_MA_HLFX_1025.py 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. from future.types import newint
  2. from jqdatasdk import *
  3. from datetime import datetime as dt
  4. import pandas as pd
  5. import pymysql
  6. from sqlalchemy import create_engine
  7. import time
  8. from xtquant.xttrader import XtQuantTrader, XtQuantTraderCallback
  9. from xtquant.xttype import StockAccount
  10. from xtquant import xtconstant
  11. from xtquant import xtdata
  12. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  13. #启动交易系统
  14. path = 'D:\\安信证券QMT实盘_交易终端\\userdata_mini'
  15. # session_id为会话编号,策略使用方对于不同的Python策略需要使用不同的会话编号
  16. session_id = 20221123
  17. #后续的所有示例将使用该实例对象
  18. xt_trader = XtQuantTrader(path, session_id)
  19. xt_trader.start()
  20. connect_result = xt_trader.connect()
  21. if connect_result == 0:
  22. print('QMTmini 已连接')
  23. else:
  24. print('连接失败')
  25. account = StockAccount('920000207040', 'SECURITY') # xt_trader为XtQuant API实例对象
  26. positions = xt_trader.query_stock_positions(account)
  27. fre = '1d'
  28. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  29. # engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  30. db_pool = pymysql.connect(host='localhost',
  31. user='root',
  32. port=3307,
  33. password='r6kEwqWU9!v3',
  34. database='hlfx_pool')
  35. cursor_pool = db_pool.cursor()
  36. fut = locals()
  37. print(dt.now(), '开始寻找MA5趋势!')
  38. def XtTrader(new_keep_stock):
  39. # 获取账号信息
  40. # account = StockAccount('888824600221', 'CREDIT') #xt_trader为XtQuant API实例对象
  41. account = StockAccount('920000207040', 'SECURITY') # xt_trader为XtQuant API实例对象
  42. # print('acc:', account.account_type, account.account_id)
  43. # print("query asset:")
  44. asset = xt_trader.query_stock_asset(account)
  45. positions = xt_trader.query_stock_positions(account)
  46. if asset:
  47. print("asset:")
  48. print(asset.account_type, asset.account_id, asset.cash, asset.frozen_cash, asset.market_value,
  49. asset.total_asset)
  50. # 开始交易
  51. for i in new_keep_stock:
  52. print(i)
  53. price = get_bars(i.replace('SH', 'XSHG').replace('SZ', 'XSHE'), count=1, unit=fre, fields=['close'],
  54. include_now=True).iloc[-1].at['close']
  55. print('price:', price)
  56. print(asset.cash / price)
  57. if asset.cash > 2000:
  58. volume = int((asset.cash / 2 / price) // 100 * 100)
  59. print('volume:', volume)
  60. order_id = xt_trader.order_stock(account, i, xtconstant.STOCK_BUY, volume, xtconstant.LATEST_PRICE, price, 'strategy1', 'order_test')
  61. print(order_id)
  62. # for i in positions:
  63. # price = get_bars(i.replace('SH', 'XSHG').replace('SZ', 'XSHE'), count=1, unit=fre, fields=['close'],
  64. # include_now=True).iloc[-1].at['close']
  65. # if Sell_Trader(i):
  66. # print('yao maihu de gupiao !!!!!!!!!!!', i.stock_code)
  67. # order_id = xt_trader.order_stock(account, i, xtconstant.STOCK_SELL,
  68. # 1000, xtconstant.FIX_PRICE, 10.90, 'strategy1', 'order_test')
  69. # print(positions[1].stock_code, positions[1].volume)
  70. print('今日成交:')
  71. for trades in xt_trader.query_stock_trades(account):
  72. print(trades.stock_code, trades.traded_volume, trades.traded_price)
  73. positions = xt_trader.query_stock_positions(account)
  74. print("positions:", len(positions))
  75. if len(positions) != 0:
  76. print("last position:")
  77. print("{0} {1} {2}".format(positions[-1].account_id, positions[-1].stock_code, positions[-1].volume))
  78. print(positions)
  79. xt_trader.stop()
  80. def Sell_Trader(stock, account, positions, volume):
  81. price = get_bars(stock, count=1, unit=fre, fields=['close'],
  82. include_now=True).iloc[-1].at['close']
  83. print(type(stock.replace('XSHG', 'SH').replace('XSHE', 'SZ')),stock.replace('XSHG', 'SH').replace('XSHE', 'SZ') )
  84. order_id = xt_trader.order_stock(account, stock.replace('XSHG', 'SH').replace('XSHE', 'SZ'), xtconstant.STOCK_SELL,
  85. volume, xtconstant.LATEST_PRICE, 0, 'strategy1', 'order_test')
  86. print(order_id, i)
  87. while True:
  88. now_date = dt.now()
  89. date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
  90. date_morning_end = now_date.replace(hour=11, minute=31, second=0)
  91. date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
  92. date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
  93. # if True:
  94. if date_morning_begin < now_date < date_morning_end or date_afternooe_begin < now_date < date_afternooe_end:
  95. # time.sleep(1800)
  96. try:
  97. account = StockAccount('920000207040', 'SECURITY') # xt_trader为XtQuant API实例对象
  98. positions = xt_trader.query_stock_positions(account)
  99. print(positions)
  100. except BaseException:
  101. continue
  102. for i in positions:
  103. # print(i.stock_code, i.volume)
  104. volume = i.volume
  105. stock = i.stock_code.replace('SH', 'XSHG').replace('SZ', 'XSHE')
  106. df_stock = get_bars(stock, count=60, unit=fre,
  107. fields=['date', 'open', 'close', 'high', 'low', 'volume'],
  108. include_now=True, df=True)
  109. price = df_stock.iloc[-1].at['close']
  110. MA5_1 = df_stock['close'][-7:-2].mean()
  111. MA5 = df_stock['close'][-6:-1].mean()
  112. MA10 = df_stock['close'][-11:-1].mean()
  113. MA20 = df_stock['close'][-21:-1].mean()
  114. if price < MA5 or MA5 < MA5_1 or price > MA5 * 1.12:
  115. print(MA5, MA5_1)
  116. Sell_Trader(stock, account, positions, volume)
  117. for fre in ['1d']:
  118. print('开始:', fre)
  119. results = []
  120. try:
  121. stock_pool = pd.read_sql_query(
  122. 'select value from `%s`' % fre, engine_hlfx_pool)
  123. stock_pool = stock_pool.iloc[-1, 0].split(",")
  124. print(stock_pool)
  125. except BaseException:
  126. continue
  127. for stock in stock_pool:
  128. # print(stock)
  129. try:
  130. df_stock = get_bars(stock, count=60, unit=fre, fields=['date', 'open', 'close', 'high', 'low','volume'],
  131. include_now=True, df=True)
  132. price = df_stock.iloc[-1].at['close']
  133. price_open = df_stock.iloc[-1].at['open']
  134. MA5_1 = df_stock['close'][-7:-2].mean()
  135. MA5 = df_stock['close'][-6:-1].mean()
  136. MA10 = df_stock['close'][-11:-1].mean()
  137. MA20 = df_stock['close'][-21:-1].mean()
  138. # print(price,price_open, 'ma5_1:',MA5_1, 'ma5:', MA5,MA10)
  139. if (price > price_open) & (price > MA5) & (MA5 > MA5_1) & (price < MA5 * 1.03) & (MA20 < MA10) \
  140. & (df_stock.iloc[-1].at['volume'] > df_stock.iloc[-2].at['volume']):
  141. print(stock)
  142. results.append(stock)
  143. elif price < MA5 or MA5<MA5_1 or price > MA5*1.09:
  144. stock_pool.remove(stock)
  145. print(stock, '已失败!')
  146. except BaseException:
  147. continue
  148. results = list(set(results))
  149. print(results)
  150. now_time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
  151. # results_list =','.join(results)
  152. # print(fre, '\n', results_list)
  153. if len(results) == 0:
  154. continue
  155. else:
  156. num_industry = get_industry(results)
  157. print(num_industry)
  158. industry_list = []
  159. for key in num_industry.values():
  160. for key2 in key.values():
  161. industry_list.append(key2['industry_name'])
  162. industry_list = pd.value_counts(industry_list)
  163. # 最热集中的n个板块
  164. max_industry_list = list(industry_list[0:3].index)
  165. results_industry = []
  166. for key, value in num_industry.items():
  167. for key2 in value.values():
  168. if key2['industry_name'] in max_industry_list:
  169. results_industry.append(key)
  170. print('suoyou:', set(results_industry))
  171. results_industry = ','.join(set(results_industry))
  172. print(fre, '\n', results_industry)
  173. sql = "INSERT INTO MA5_%s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'),
  174. results_industry)
  175. cursor_pool.execute(sql)
  176. db_pool.commit()
  177. print(len(results_industry), results_industry)
  178. print(dt.now(), '数据库数据已赋值!')
  179. # 取值交易
  180. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  181. # stocks = xtdata.get_stock_list_in_sector('沪深A股')
  182. keep_stocks = pd.read_sql_query(
  183. 'select value from `MA5_%s`' % fre, engine_hlfx_pool)
  184. keep_stocks = keep_stocks.iloc[-1, 0].split(",")
  185. new_keep_stock = [stock.replace('XSHG', 'SH').replace('XSHE', 'SZ') for stock in keep_stocks]
  186. print(new_keep_stock)
  187. price = get_bars(keep_stocks, count=1, unit=fre, fields=['close'])
  188. XtTrader(new_keep_stock)
  189. time.sleep(1800)
  190. elif now_date > date_afternooe_end:
  191. pass
  192. # print("MA5_收盘了", now_date)
  193. # break