real_time_update_qbh_hlfx_1025.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. from jqdatasdk import *
  2. import pandas as pd
  3. import pymysql
  4. from sqlalchemy import create_engine
  5. import threading
  6. from datetime import datetime as dt
  7. from jqdatasdk.technical_analysis import *
  8. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  9. stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  10. # stocks = stocks[0:200]
  11. def hlfx(stocks, engine_stock, engine_hlfx):
  12. for thd.stock in stocks:
  13. print(thd.stock)
  14. if ('stk%s_%s' % (thd.stock, fre)) in table_list:
  15. # 有历史数据
  16. index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 0]
  17. startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 1]
  18. # thd.get_price = pd.read_sql_query(
  19. # 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
  20. # thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
  21. thd.get_price = df.loc[thd.stock]
  22. thd.df_day = pd.read_sql_query(
  23. 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine_hlfx)
  24. # 先处理去包含
  25. for i in thd.get_price.index:
  26. # 不包含
  27. if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  28. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  29. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  30. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  31. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  32. # 包含
  33. else:
  34. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  35. # 左高,下降
  36. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  37. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  38. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  39. else:
  40. # 右高,上升
  41. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  42. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  43. # 寻找顶底分型
  44. if len(thd.df_day.index) > 2:
  45. x = len(thd.df_day.index)-1
  46. m = x - 1
  47. # 底
  48. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  49. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  50. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  51. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  52. thd.df_day.loc[x, 'HL'] = 'L*'
  53. while m:
  54. if thd.df_day.loc[m, 'HL'] == 'H':
  55. if (x - m) > 3:
  56. thd.df_day.loc[x, 'HL'] = 'L'
  57. # 此处可以获得MACD指标
  58. # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
  59. # pass
  60. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '\n',
  61. '笔形成————买买买买买!!')
  62. results.append(thd.stock)
  63. print('222')
  64. # break
  65. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  66. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  67. # 前一个为底,且中间存在不包含 or 更低的底
  68. thd.df_day.loc[x, 'HL'] = 'L'
  69. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  70. check_date=thd.df_day.loc[x, 'date'],
  71. SHORT=12, LONG=26, MID=9, unit=fre)
  72. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  73. check_date=thd.df_day.loc[m, 'date'],
  74. SHORT=12, LONG=26, MID=9, unit=fre)
  75. if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
  76. # pass
  77. # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
  78. # m_macd_dif[thd.stock])
  79. # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
  80. # x_macd_dif[thd.stock])
  81. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], 'MACD背驰————买吗?!')
  82. results.append(thd.stock)
  83. print('333')
  84. break
  85. else:
  86. # 底更低但没有背驰
  87. break
  88. m = m - 1
  89. if m == 0:
  90. # 第一个底
  91. thd.df_day.loc[x, 'HL'] = 'L'
  92. results.append(thd.stock)
  93. print('444')
  94. # 顶
  95. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  96. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  97. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  98. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  99. thd.df_day.loc[x, 'HL'] = 'H*'
  100. while m:
  101. if thd.df_day.loc[m, 'HL'] == 'L':
  102. if x - m > 3:
  103. thd.df_day.loc[x, 'HL'] = 'H'
  104. print(thd.stock, '!!!!!!!', '\n', thd.df_day.loc[x, 'date'], '笔形成————卖卖卖卖卖卖卖!')
  105. # pass
  106. results_short.append(thd.stock)
  107. if thd.stock in results:
  108. results.remove(thd.stock)
  109. # break
  110. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  111. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  112. # 前一个为顶,且中间存在不包含 or 更高的顶
  113. thd.df_day.loc[x, 'HL'] = 'H'
  114. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  115. check_date=thd.df_day.loc[x, 'date'],
  116. SHORT=12, LONG=26, MID=9, unit=fre)
  117. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  118. check_date=thd.df_day.loc[m, 'date'],
  119. SHORT=12, LONG=26, MID=9, unit=fre)
  120. if x_macd_dif[thd.stock] < m_macd_dif[thd.stock]:
  121. # pass
  122. print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
  123. results_short.append(thd.stock)
  124. if thd.stock in results:
  125. results.remove(thd.stock)
  126. break
  127. break
  128. m = m - 1
  129. if m == 0:
  130. thd.df_day.loc[x, 'HL'] = 'H'
  131. results_short.append(thd.stock)
  132. if thd.stock in results:
  133. results.remove(thd.stock)
  134. else:
  135. thd.df_day.loc[x, 'HL'] = '-'
  136. # 更新数据库
  137. # 可以使用normalize_code(code) 方法 改变代码格式
  138. # thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
  139. else:
  140. # 没有历史数据表
  141. thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  142. thd.get_price = pd.read_sql_query(
  143. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
  144. # 先处理去包含
  145. for i in thd.get_price.index:
  146. if i == 0 or i == 1:
  147. thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
  148. # 不包含
  149. elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  150. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  151. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  152. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  153. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  154. # 包含
  155. else:
  156. # 左高,下降
  157. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  158. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  159. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  160. else:
  161. # 右高,上升
  162. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  163. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  164. if len(thd.df_day.index) > 2:
  165. # 寻找顶底分型
  166. x = len(thd.df_day.index)-1
  167. m = x - 1
  168. # 底
  169. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  170. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  171. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  172. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  173. thd.df_day.loc[x, 'HL'] = 'L*'
  174. while m:
  175. if thd.df_day.loc[m, 'HL'] == 'H':
  176. if (x - m) > 3:
  177. thd.df_day.loc[x, 'HL'] = 'L'
  178. # 此处可以获得MACD指标
  179. # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
  180. # pass
  181. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
  182. results.append(thd.stock)
  183. # break
  184. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  185. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  186. # 前一个为底,且中间存在不包含 or 更低的底
  187. thd.df_day.loc[x, 'HL'] = 'L'
  188. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  189. check_date=thd.df_day.loc[x, 'date'],
  190. SHORT=12, LONG=26, MID=9, unit=fre)
  191. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  192. check_date=thd.df_day.loc[m, 'date'],
  193. SHORT=12, LONG=26, MID=9, unit=fre)
  194. if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
  195. # pass
  196. # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
  197. # m_macd_dif[thd.stock])
  198. # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
  199. # x_macd_dif[thd.stock])
  200. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],
  201. 'MACD背驰————买吗?!')
  202. results.append(thd.stock)
  203. break
  204. else:
  205. break
  206. m = m - 1
  207. if m == 0:
  208. thd.df_day.loc[x, 'HL'] = 'L'
  209. results.append(thd.stock)
  210. # 顶
  211. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  212. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  213. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  214. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  215. thd.df_day.loc[x, 'HL'] = 'H*'
  216. while m:
  217. if thd.df_day.loc[m, 'HL'] == 'L':
  218. if x - m > 3:
  219. thd.df_day.loc[x, 'HL'] = 'H'
  220. print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  221. # pass
  222. results.remove(thd.stock)
  223. # break
  224. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  225. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  226. # 前一个为顶,且中间存在不包含 or 更高的顶
  227. thd.df_day.loc[x, 'HL'] = 'H'
  228. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  229. check_date=thd.df_day.loc[x, 'date'],
  230. SHORT=12, LONG=26, MID=9, unit=fre)
  231. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  232. check_date=thd.df_day.loc[m, 'date'],
  233. SHORT=12, LONG=26, MID=9, unit=fre)
  234. if x_macd_dif[thd.stock] < m_macd_dif[
  235. thd.stock]:
  236. # pass
  237. print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
  238. results.remove(thd.stock)
  239. break
  240. break
  241. m = m - 1
  242. if m == 0:
  243. thd.df_day.loc[x, 'HL'] = 'H'
  244. results.remove(thd.stock)
  245. else:
  246. thd.df_day.loc[x, 'HL'] = '-'
  247. # print(thd.df_day[-20:])
  248. # 更新数据库
  249. # thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
  250. start = dt.now()
  251. while True:
  252. now_date = dt.now()
  253. date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
  254. date_morning_end = now_date.replace(hour=11, minute=31, second=0)
  255. date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
  256. date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
  257. # print(now_date,date_morning_begin,date_morning_end,date_afternooe_begin,date_afternooe_end)
  258. if date_morning_begin < now_date < date_afternooe_end:
  259. # if True:
  260. for fre in ['1d']:
  261. start = dt.now()
  262. print(fre)
  263. # 连接数据库
  264. db = pymysql.connect(host='localhost',
  265. user='root',
  266. port=3307,
  267. password='r6kEwqWU9!v3',
  268. database='hlfx')
  269. cursor = db.cursor()
  270. cursor.execute("show tables like '%%%s%%' " % fre)
  271. table_list = [tuple[0] for tuple in cursor.fetchall()]
  272. print('取得 table_list %s' % fre)
  273. db_pool = pymysql.connect(host='localhost',
  274. user='root',
  275. port=3307,
  276. password='r6kEwqWU9!v3',
  277. database='hlfx_pool')
  278. cursor_pool = db_pool.cursor()
  279. stk = locals()
  280. thd = threading.local()
  281. # 进程准备
  282. step = 600
  283. thread_list = []
  284. engine_stock = []
  285. engine_hlfx = []
  286. times_engine = 0
  287. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  288. # 获得hlfx_pool池子
  289. # results = pd.read_sql_query(
  290. # 'select value from `%s`' % fre, engine_hlfx_pool)
  291. # for i in range(0, len(results)):
  292. # print(len(results.iloc[i, 0].split(",")))
  293. results = pd.read_sql_query(
  294. 'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(",")
  295. results_short = []
  296. print('数据库读取', len(results))
  297. df = get_bars(stocks, count=20, unit=fre,
  298. fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
  299. print(dt.now(), 'get_bars 成功')
  300. for i in range(0, len(stocks), step):
  301. engine_stock.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
  302. engine_hlfx.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
  303. thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine_stock[times_engine], engine_hlfx[times_engine]))
  304. times_engine = times_engine + 1
  305. thread.start()
  306. thread_list.append(thread)
  307. for thread in thread_list:
  308. thread.join()
  309. db.close()
  310. time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
  311. results_list =','.join(set(results))
  312. print(set(results))
  313. sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
  314. cursor_pool.execute(sql)
  315. db_pool.commit()
  316. print(fre, '\n', '做多:', len(set(results)), set(results))
  317. print('做空', len(set(results_short)), set(results_short))
  318. end= dt.now()
  319. print('总时长:', (end - start).seconds)
  320. elif now_date>date_afternooe_end:
  321. pass
  322. # print("HLFX_收盘了",now_date)
  323. # break