updata_qbh_hlfx.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. from jqdatasdk import *
  2. import pandas as pd
  3. import pymysql
  4. from sqlalchemy import create_engine
  5. import threading
  6. from datetime import datetime as dt
  7. import datetime
  8. auth('18019403367', 'Qwer4321')
  9. stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  10. # stocks = stocks[0:1]
  11. start = dt.now()
  12. # 确定级别
  13. # 注意修改time delta
  14. # fre = '30m'
  15. for fre in ['30m', '1d']:
  16. start = dt.now()
  17. print(fre)
  18. # 连接数据库
  19. db = pymysql.connect(host='localhost',
  20. user='root',
  21. port=3307,
  22. password='r6kEwqWU9!v3',
  23. database='hlfx')
  24. cursor = db.cursor()
  25. cursor.execute("show tables like '%%%s%%' " % fre)
  26. table_list = [tuple[0] for tuple in cursor.fetchall()]
  27. print('取得 table_list %s' % fre)
  28. stk = locals()
  29. thd = threading.local()
  30. def hlfx(stocks, engine, engine2):
  31. for thd.stock in stocks:
  32. print(thd.stock)
  33. if ('stk%s_%s' % (thd.stock, fre)) in table_list:
  34. # 有历史数据
  35. index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine2).iloc[-1, 0]
  36. # 注意修改time delta
  37. startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine2).iloc[-1, 1]
  38. # startdate = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine2).iloc[-1, 1] + datetime.timedelta(minutes= 5)
  39. thd.get_price = pd.read_sql_query(
  40. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine)
  41. thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
  42. thd.df_day = pd.read_sql_query(
  43. 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine2)
  44. # 先处理去包含
  45. for i in thd.get_price.index:
  46. # 不包含
  47. if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  48. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  49. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  50. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  51. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  52. # print(thd.df_day)
  53. # 包含
  54. else:
  55. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  56. # 左高,下降
  57. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  58. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  59. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  60. else:
  61. # 右高,上升
  62. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  63. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  64. # 寻找顶底分型
  65. if len(thd.df_day.index) > 2:
  66. # 寻找顶底分型
  67. for x in range(index_len, len(thd.df_day.index)):
  68. m = x - 1
  69. # 底
  70. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  71. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  72. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  73. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  74. thd.df_day.loc[x, 'HL'] = 'L*'
  75. while m:
  76. if thd.df_day.loc[m, 'HL'] == 'H':
  77. if (x - m) > 3:
  78. thd.df_day.loc[x, 'HL'] = 'L'
  79. if x == len(thd.df_day.index) - 1:
  80. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
  81. break
  82. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  83. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  84. # 前一个为底,且中间存在不包含 or 更低的底
  85. thd.df_day.loc[x, 'HL'] = 'L'
  86. if x == len(thd.df_day.index) - 1:
  87. # pass
  88. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '中继后的底————买吗?!')
  89. break
  90. else:
  91. break
  92. m = m - 1
  93. if m == 0:
  94. thd.df_day.loc[x, 'HL'] = 'L'
  95. # 顶
  96. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  97. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  98. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  99. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  100. thd.df_day.loc[x, 'HL'] = 'H*'
  101. while m:
  102. if thd.df_day.loc[m, 'HL'] == 'L':
  103. if x - m > 3:
  104. thd.df_day.loc[x, 'HL'] = 'H'
  105. if x == len(thd.df_day.index) - 1:
  106. # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  107. pass
  108. thd.df_day.loc[x, 9] = thd.df_day.loc[x, 'close'] - thd.df_day.loc[m, 'close']
  109. break
  110. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  111. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  112. # 前一个为顶,且中间存在不包含 or 更高的顶
  113. thd.df_day.loc[x, 'HL'] = 'H'
  114. if x == len(thd.df_day.index) - 1:
  115. pass
  116. # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!')
  117. break
  118. break
  119. m = m - 1
  120. if m == 0:
  121. thd.df_day.loc[x, 'HL'] = 'H'
  122. else:
  123. thd.df_day.loc[x, 'HL'] = '-'
  124. # 更新数据库
  125. thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine2, index=True, if_exists='append')
  126. else:
  127. # 没有历史数据表
  128. thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  129. thd.get_price = pd.read_sql_query(
  130. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine)
  131. # 先处理去包含
  132. for i in thd.get_price.index:
  133. if i == 0 or i == 1:
  134. thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
  135. # 不包含
  136. elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  137. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  138. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  139. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  140. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  141. # 包含
  142. else:
  143. # 左高,下降
  144. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  145. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  146. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  147. else:
  148. # 右高,上升
  149. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  150. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  151. if len(thd.df_day.index) > 2:
  152. # 寻找顶底分型
  153. for x in range(2, len(thd.df_day.index)):
  154. m = x - 1
  155. # 底
  156. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  157. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  158. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  159. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  160. thd.df_day.loc[x, 'HL'] = 'L*'
  161. while m:
  162. if thd.df_day.loc[m, 'HL'] == 'H':
  163. if (x - m) > 3:
  164. thd.df_day.loc[x, 'HL'] = 'L'
  165. if x == len(thd.df_day.index) - 1:
  166. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
  167. break
  168. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  169. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  170. # 前一个为底,且中间存在不包含 or 更低的底
  171. thd.df_day.loc[x, 'HL'] = 'L'
  172. if x == len(thd.df_day.index) - 1:
  173. # pass
  174. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '中继后的底————买吗?!')
  175. break
  176. else:
  177. break
  178. m = m - 1
  179. if m == 0:
  180. thd.df_day.loc[x, 'HL'] = 'L'
  181. # 顶
  182. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  183. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  184. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  185. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  186. thd.df_day.loc[x, 'HL'] = 'H*'
  187. while m:
  188. if thd.df_day.loc[m, 'HL'] == 'L':
  189. if x - m > 3:
  190. thd.df_day.loc[x, 'HL'] = 'H'
  191. if x == len(thd.df_day.index) - 1:
  192. # print(stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  193. pass
  194. thd.df_day.loc[x, 9] = thd.df_day.loc[x, 'close'] - thd.df_day.loc[m, 'close']
  195. break
  196. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  197. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  198. # 前一个为顶,且中间存在不包含 or 更高的顶
  199. thd.df_day.loc[x, 'HL'] = 'H'
  200. if x == len(thd.df_day.index) - 1:
  201. pass
  202. # print(stock, '/\/\/\/\/\/\/', '一顶更有一顶高!')
  203. break
  204. break
  205. m = m - 1
  206. if m == 0:
  207. thd.df_day.loc[x, 'HL'] = 'H'
  208. else:
  209. thd.df_day.loc[x, 'HL'] = '-'
  210. # 更新数据库
  211. thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine2, index=True, if_exists='append')
  212. step = 500
  213. thread_list = []
  214. engine = []
  215. engine2 = []
  216. times_engine = 0
  217. for i in range(0, len(stocks), step):
  218. engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
  219. engine2.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
  220. thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine[times_engine], engine2[times_engine]))
  221. times_engine = times_engine + 1
  222. thread.start()
  223. thread_list.append(thread)
  224. for thread in thread_list:
  225. thread.join()
  226. db.close()
  227. end= dt.now()
  228. print('总时长:', (end - start).seconds)