1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- from jqdatasdk import *
- auth('18019403367', 'Qwer4321')
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import threading
- # 连接数据库
- # db_stk_sql = pymysql.connect(host='localhost',
- # user='root',
- # port=3307,
- # password='r6kEwqWU9!v3',
- # database='stocks',
- # connect_timeout=600)
- #
- #
- # db_qbh = pymysql.connect(host='localhost',
- # user='root',
- # port=3307,
- # password='r6kEwqWU9!v3',
- # database='qbh',
- # charset='utf8')
- #
- #
- # cursor = db_qbh.cursor()
- # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
- engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
- # stocks =stocks[0:40]
- thd = threading.local()
- def qbh(stocks , engine):
- for stock in stocks:
- print(stock)
- thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
- # print(new_df.head())
- thd.df_day = stk['stk' + stock[:6]]
- for i in thd.df_day.index:
- if i == 0 or i == 1:
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
- # 不包含
- elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
- and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
- or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
- and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
- # 包含
- else:
- # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
- if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]: #左高,下降
- thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
- thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
- else:
- # 右高,上升
- thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
- thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
- thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine, index=True, if_exists='replace')
- with engine.connect() as con:
- con.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);'% (stock[:6], u))
- print(stock)
- print("**************")
- # new_df.to_csv('new_df.csv')
- #return new_df
- stk = locals()
- engine = locals()
- u = '1d'
- # 获取数据存入DataFrame
- for stock in stocks:
- stk['stk'+stock[:6]] = pd.read_sql_query('select date,open,close,high,low,volume,money from stk%s_%s' % (stock[:6], u), engine2)
- # print(stock, stk['stk'+stock[:6]])
- print("###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################")
- # 开始去包含
- # qbh(stocks)
- for m in range(0, len(stocks), 50):
- engine[m] = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8', pool_recycle=3600)
- threading.Thread(target=qbh, args=(stocks[m:m + 50], engine[m])).start()
|