123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- from jqdatasdk import *
- from datetime import datetime as dt
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import time
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- # fre = ['30m', '1d']
- engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
- stock_pool = pd.read_sql_query(
- 'select value from MA5_1d', engine_hlfx_pool)
- stock_pool = stock_pool.iloc[-2, 0].split(",")
- print(type(stock_pool), len(stock_pool),stock_pool)
- num_industry = get_industry(stock_pool)
- print(num_industry)
- results = []
- a = []
- for key in num_industry.values():
- for key2 in key.values():
- results.append(key2['industry_name'])
- results = pd.value_counts(results)
- print(results)
- results = results[0:3]
- results = list(results.index)
- print(results)
- for key,value in num_industry.items():
- for key2 in value.values():
- if key2['industry_name'] in results:
- a.append(key)
- print(set(a))
- from jqdatasdk import *
- from datetime import datetime as dt
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import numpy as np
- from jqdatasdk.technical_analysis import *
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- def calculateEMA(period, closeArray, emaArray):
- """计算指数移动平均"""
- length = len(closeArray)
- nanCounter = np.count_nonzero(np.isnan(closeArray))
- if emaArray:
- # emaArray.extend(np.tile([np.nan], (nanCounter + period - 1)))
- # firstema = np.mean(closeArray[nanCounter:nanCounter + period - 1])
- firstema = emaArray[-1]
- emaArray.append(firstema)
- for i in range(nanCounter, length):
- ema = (2 * closeArray[i] + (period - 1) * emaArray[-1]) / (period + 1)
- emaArray.append(ema)
- return np.array(emaArray)
- def calculateMACD(emaArray, closeArray, shortPeriod=12, longPeriod=26, signalPeriod=9):
- ema12 = calculateEMA(shortPeriod, closeArray, emaArray)
- print(ema12)
- ema26 = calculateEMA(longPeriod, closeArray, emaArray)
- print(ema26)
- diff = ema12 - ema26
- dea = calculateEMA(signalPeriod, diff, [])
- macd = 2 * (diff - dea)
- return macd, diff, dea
- stock = '000010.XSHE'
- fre = '1d'
- emaArray = []
- engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- df = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine_stock)
- df_close = df['close']
- emaArray.append = EMA(stock, check_date='2010-01-04', timeperiod=fre)[stock]
- df2 = calculateMACD(emaArray, df_close)
- print(df2)
- print(len(df), len(df2[0]))
- df3 = pd.concat([df, pd.Series(df2[0]).rename('macd'), pd.Series(df2[1]).rename('diff'), pd.Series(df2[2]).rename('dea')], axis=1)
- print(df3.loc[df.date== '2010-02-25',:])
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(stock, check_date='2010-02-26 00:00:00', SHORT=12, LONG=26, MID=9, unit=fre)
- print(x_macd_macd, x_macd_dif, x_macd_dea)
|