bk_test.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. from jqdatasdk import *
  2. from datetime import datetime as dt
  3. import pandas as pd
  4. import pymysql
  5. from sqlalchemy import create_engine
  6. import time
  7. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  8. # fre = ['30m', '1d']
  9. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  10. stock_pool = pd.read_sql_query(
  11. 'select value from MA5_1d', engine_hlfx_pool)
  12. stock_pool = stock_pool.iloc[-2, 0].split(",")
  13. print(type(stock_pool), len(stock_pool),stock_pool)
  14. num_industry = get_industry(stock_pool)
  15. print(num_industry)
  16. results = []
  17. a = []
  18. for key in num_industry.values():
  19. for key2 in key.values():
  20. results.append(key2['industry_name'])
  21. results = pd.value_counts(results)
  22. print(results)
  23. results = results[0:3]
  24. results = list(results.index)
  25. print(results)
  26. for key,value in num_industry.items():
  27. for key2 in value.values():
  28. if key2['industry_name'] in results:
  29. a.append(key)
  30. print(set(a))
  31. from jqdatasdk import *
  32. from datetime import datetime as dt
  33. import pandas as pd
  34. import pymysql
  35. from sqlalchemy import create_engine
  36. import numpy as np
  37. from jqdatasdk.technical_analysis import *
  38. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  39. def calculateEMA(period, closeArray, emaArray):
  40. """计算指数移动平均"""
  41. length = len(closeArray)
  42. nanCounter = np.count_nonzero(np.isnan(closeArray))
  43. if emaArray:
  44. # emaArray.extend(np.tile([np.nan], (nanCounter + period - 1)))
  45. # firstema = np.mean(closeArray[nanCounter:nanCounter + period - 1])
  46. firstema = emaArray[-1]
  47. emaArray.append(firstema)
  48. for i in range(nanCounter, length):
  49. ema = (2 * closeArray[i] + (period - 1) * emaArray[-1]) / (period + 1)
  50. emaArray.append(ema)
  51. return np.array(emaArray)
  52. def calculateMACD(emaArray, closeArray, shortPeriod=12, longPeriod=26, signalPeriod=9):
  53. ema12 = calculateEMA(shortPeriod, closeArray, emaArray)
  54. print(ema12)
  55. ema26 = calculateEMA(longPeriod, closeArray, emaArray)
  56. print(ema26)
  57. diff = ema12 - ema26
  58. dea = calculateEMA(signalPeriod, diff, [])
  59. macd = 2 * (diff - dea)
  60. return macd, diff, dea
  61. stock = '000010.XSHE'
  62. fre = '1d'
  63. emaArray = []
  64. engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  65. df = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine_stock)
  66. df_close = df['close']
  67. emaArray.append = EMA(stock, check_date='2010-01-04', timeperiod=fre)[stock]
  68. df2 = calculateMACD(emaArray, df_close)
  69. print(df2)
  70. print(len(df), len(df2[0]))
  71. df3 = pd.concat([df, pd.Series(df2[0]).rename('macd'), pd.Series(df2[1]).rename('diff'), pd.Series(df2[2]).rename('dea')], axis=1)
  72. print(df3.loc[df.date== '2010-02-25',:])
  73. x_macd_dif, x_macd_dea, x_macd_macd = MACD(stock, check_date='2010-02-26 00:00:00', SHORT=12, LONG=26, MID=9, unit=fre)
  74. print(x_macd_macd, x_macd_dif, x_macd_dea)