1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- from jqdatasdk import *
- from jqdatasdk.technical_analysis import *
- from sqlalchemy import create_engine
- import pandas as pd
- import pymysql
- import datetime
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- strattime = datetime.datetime.now()
- print(get_query_count())
- stocks = list(get_all_securities(['stock']).index)
- qihuo = get_price(['IF9999.CCFX', 'IC9999.CCFX','IH9999.CCFX', 'IM9999.CCFX'], start_date='2015-01-01', end_date='2015-12-31', frequency='daily', fields=None, skip_paused=False, fq='pre' ,panel=True)
- print(qihuo)
- for fre in ['30m', '1d']:
- print(fre)
- # 连接数据库
- db = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='hlfx')
- cursor = db.cursor()
- cursor.execute("show tables like '%%%s%%' " % fre)
- table_list = [tuple[0] for tuple in cursor.fetchall()]
- print('取得 table_list %s' % fre)
- time = datetime.datetime(2010, 1, 4)
- print(time)
- for stock in table_list:
- print(stock)
- sql = ("select date_format(date, '%%Y-%%m-%%d') from `%s` where HL='L'" % stock)
- cheak_time = cursor.execute(sql)
- print(cheak_time)
- time_list = [''.join(time) for time in cursor.fetchall()]
- print(time_list)
- break
- #stock = normalize_code(stock[3:9])
- # 定义股票池列表
- security_list1 = '000001.XSHE'
- # security_list2 = ['000001.XSHE','000002.XSHE','601211.XSHG','603177.XSHG']
- # # 计算并输出 security_list1 的 MACD 值
- macd_dif, macd_dea, macd_macd = MACD(security_list1, check_date=time_list[1], SHORT = 12, LONG = 26, MID = 9)
- print(macd_dif[security_list1])
- print(macd_dea[security_list1])
- print(macd_macd[security_list1])
- # 输出 security_list2 的 MACD 值
- macd_dif, macd_dea, macd_macd = MACD(security_list2,check_date=datetime.datetime.today(), SHORT = 12, LONG = 26, MID = 9)
- for stock in security_list2:
- print(macd_dif[stock])
- print(macd_dea[stock])
- print(macd_macd[stock])
- df = get_bars(stocks, count=10, unit='30m',
- fields=['date','open','close','high','low','volume','money'],include_now=False,end_dt=datetime.date.today())
- print(df)
- endtime = datetime.datetime.now()
- print('单次时长为:', (endtime - strattime).seconds)
- #get_ticks("000001.XSHE", "2022-01-01", datetime.datetime.today())
|