123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- from jqdatasdk import *
- from datetime import datetime as dt
- import pandas as pd
- from sqlalchemy import create_engine
- import numpy as np
- from jqdatasdk.technical_analysis import *
- def calculateEMA(period, closeArray, ema, emaArray=[]):
- """计算指数移动平均"""
- length = len(closeArray)
- nanCounter = np.count_nonzero(np.isnan(closeArray))
- if not emaArray:
- if ema and (ema !=0):
- firstema = ema
- emaArray.append(firstema)
- else:
- print('走这里了')
- emaArray.extend(np.tile([np.nan], (nanCounter + period - 1)))
- firstema = np.mean(closeArray[nanCounter:nanCounter + period - 1])
- emaArray.append(firstema)
- for i in range(nanCounter+period, length):
- ema_a = (2 * closeArray[i] + (period - 1) * emaArray[-1]) / (period + 1)
- emaArray.append(ema_a)
- return np.array(emaArray)
- def calculateMACD(closeArray, ema, shortPeriod=12, longPeriod=26, signalPeriod=9):
- ema12 = calculateEMA(shortPeriod, closeArray, ema, [])
- ema26 = calculateEMA(longPeriod, closeArray, ema, [])
- diff = ema12 - ema26
- dea = calculateEMA(signalPeriod, diff, 0, [])
- macd = 2 * (diff - dea)
- return macd, diff, dea
- # auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- auth('18521506014', 'Abc123!@#')
- stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
- engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- engine_data = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks_data?charset=utf8')
- fre = '1d'
- print('ready to write to mysql %s' % fre)
- for stock in stocks[2500:2501]:
- print(stock, fre)
- starttime ='2022-01-01'
- # endtime = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine).iloc[-1, 1]
- df_stock2 = get_price(stock, start_date=starttime, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
- frequency=fre, fields=['open', 'close', 'high', 'low', 'volume', 'money'],
- skip_paused=False,
- fq='pre', count=None, panel=False)
- df_stock = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine)
- # df_stock.index.name = 'date'
- df_money = get_money_flow(stock, start_date=starttime, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
- fields=None, count=None)
- df_money = df_money.drop(columns=['sec_code'])
- df_stock = pd.merge(df_stock, df_money, how='outer', left_index=False , on='date')
- # df_stock.to_csv('/Users/daniel/Downloads/Result.csv')
- df_stock = df_stock.dropna(axis=0)
- df_stock2=df_stock2.dropna(axis=0)
- df_stock2.reset_index(inplace=True)
- df_stock2.rename(columns={'index': 'date'}, inplace=True)
- print(df_stock2)
- df_close = df_stock2['close']
- if starttime != df_stock2.loc[0, 'date'].strftime('%Y-%m-%d'):
- ema = 0
- else:
- ema = EMA(stock, check_date=starttime, timeperiod=30)[stock]
- df_macd = calculateMACD(df_close, ema)
- df_stock = pd.concat([df_stock2, pd.Series(df_macd[0]).rename('macd'), pd.Series(df_macd[1]).rename('diff'), pd.Series(df_macd[2]).rename('dea')], axis=1)
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(stock, check_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'), SHORT=12, LONG=26, MID=9,
- unit=fre)
- print(x_macd_macd, x_macd_dif, x_macd_dea)
- print(df_stock)
- # df_stock.to_sql('stk%s_%s' % (stock, fre), con=engine_data, index=True, if_exists='append')
- # with engine.connect() as con:
- # con.execute("ALTER TABLE `stk%s_%s` ADD PRIMARY KEY (`date`);" % (stock, fre))
- # print(df_stock)
|