his_money_flow.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. from jqdatasdk import *
  2. from datetime import datetime as dt
  3. import pandas as pd
  4. from sqlalchemy import create_engine
  5. import numpy as np
  6. from jqdatasdk.technical_analysis import *
  7. def calculateEMA(period, closeArray, ema, emaArray=[]):
  8. """计算指数移动平均"""
  9. length = len(closeArray)
  10. nanCounter = np.count_nonzero(np.isnan(closeArray))
  11. if not emaArray:
  12. if ema and (ema !=0):
  13. firstema = ema
  14. emaArray.append(firstema)
  15. else:
  16. print('走这里了')
  17. emaArray.extend(np.tile([np.nan], (nanCounter + period - 1)))
  18. firstema = np.mean(closeArray[nanCounter:nanCounter + period - 1])
  19. emaArray.append(firstema)
  20. for i in range(nanCounter+period, length):
  21. ema_a = (2 * closeArray[i] + (period - 1) * emaArray[-1]) / (period + 1)
  22. emaArray.append(ema_a)
  23. return np.array(emaArray)
  24. def calculateMACD(closeArray, ema, shortPeriod=12, longPeriod=26, signalPeriod=9):
  25. ema12 = calculateEMA(shortPeriod, closeArray, ema, [])
  26. ema26 = calculateEMA(longPeriod, closeArray, ema, [])
  27. diff = ema12 - ema26
  28. dea = calculateEMA(signalPeriod, diff, 0, [])
  29. macd = 2 * (diff - dea)
  30. return macd, diff, dea
  31. # auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  32. auth('18521506014', 'Abc123!@#')
  33. stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  34. engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  35. engine_data = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks_data?charset=utf8')
  36. fre = '1d'
  37. print('ready to write to mysql %s' % fre)
  38. for stock in stocks[2500:2501]:
  39. print(stock, fre)
  40. starttime ='2022-01-01'
  41. # endtime = pd.read_sql_table('stk%s_%s' % (stock, fre), con=engine).iloc[-1, 1]
  42. df_stock2 = get_price(stock, start_date=starttime, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
  43. frequency=fre, fields=['open', 'close', 'high', 'low', 'volume', 'money'],
  44. skip_paused=False,
  45. fq='pre', count=None, panel=False)
  46. df_stock = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine)
  47. # df_stock.index.name = 'date'
  48. df_money = get_money_flow(stock, start_date=starttime, end_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'),
  49. fields=None, count=None)
  50. df_money = df_money.drop(columns=['sec_code'])
  51. df_stock = pd.merge(df_stock, df_money, how='outer', left_index=False , on='date')
  52. # df_stock.to_csv('/Users/daniel/Downloads/Result.csv')
  53. df_stock = df_stock.dropna(axis=0)
  54. df_stock2=df_stock2.dropna(axis=0)
  55. df_stock2.reset_index(inplace=True)
  56. df_stock2.rename(columns={'index': 'date'}, inplace=True)
  57. print(df_stock2)
  58. df_close = df_stock2['close']
  59. if starttime != df_stock2.loc[0, 'date'].strftime('%Y-%m-%d'):
  60. ema = 0
  61. else:
  62. ema = EMA(stock, check_date=starttime, timeperiod=30)[stock]
  63. df_macd = calculateMACD(df_close, ema)
  64. df_stock = pd.concat([df_stock2, pd.Series(df_macd[0]).rename('macd'), pd.Series(df_macd[1]).rename('diff'), pd.Series(df_macd[2]).rename('dea')], axis=1)
  65. x_macd_dif, x_macd_dea, x_macd_macd = MACD(stock, check_date=dt.today().strftime('%Y-%m-%d %H:%M:%S'), SHORT=12, LONG=26, MID=9,
  66. unit=fre)
  67. print(x_macd_macd, x_macd_dif, x_macd_dea)
  68. print(df_stock)
  69. # df_stock.to_sql('stk%s_%s' % (stock, fre), con=engine_data, index=True, if_exists='append')
  70. # with engine.connect() as con:
  71. # con.execute("ALTER TABLE `stk%s_%s` ADD PRIMARY KEY (`date`);" % (stock, fre))
  72. # print(df_stock)