12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- from jqdatasdk import *
- from sqlalchemy import create_engine
- from jqdatasdk.technical_analysis import *
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- import numpy as np
- import pandas as pd
- def calculateEMA(period, closeArray, ema, emaArray=[]):
- """计算指数移动平均"""
- length = len(closeArray)
- nanCounter = np.count_nonzero(np.isnan(closeArray))
- print('def ema', ema)
- if not emaArray:
- if not ema and ema:
- firstema = ema
- else:
- firstema = np.mean(closeArray[nanCounter:nanCounter + period - 1])
- # emaArray.extend(np.tile([np.nan], (nanCounter + period - 1)))
- print('fe', firstema)
- emaArray.append(firstema)
- for i in range(nanCounter, length):
- ema_a = (2 * closeArray[i] + (period - 1) * emaArray[-1]) / (period + 1)
- emaArray.append(ema_a)
- return np.array(emaArray[1:])
- def calculateMACD(closeArray,ema, shortPeriod=12, longPeriod=26, signalPeriod=9):
- ema12 = calculateEMA(shortPeriod, closeArray, ema, [])
- print(ema12)
- ema26 = calculateEMA(longPeriod, closeArray, ema, [])
- print(ema26)
- diff = ema12 - ema26
- dea = calculateEMA(signalPeriod, diff, 0, [])
- print(diff,len(diff))
- print('dea=', dea, type(dea))
- macd = 2 * (diff - dea)
- return macd, diff, dea
- stock = '300114.XSHE'
- fre = '1d'
- check_date = '2010-01-04'
- emaArray = []
- engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- df = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`' % (stock, fre), engine_stock)
- df_close = df['close']
- ema = EMA(stock, check_date=f'2009-12-31', timeperiod=30)[stock]
- print('ddd', ema)
- df4 = calculateMACD(df_close, ema)
- # df2 = calculateMACD(emaArray, df_close)
- # print('df2=', df2)
- # print(len(df), len(df2[0]))
- # df3 = pd.concat([df, pd.Series(df2[0]).rename('macd'), pd.Series(df2[1]).rename('diff'), pd.Series(df2[2]).rename('dea')], axis=1)
- print('df=', df)
- df4 = pd.concat([df, pd.Series(df4[0]).rename('macd'), pd.Series(df4[1]).rename('diff'), pd.Series(df4[2]).rename('dea')], axis=1)
- print('df=', df4)
- print(df4.loc[df.date== '2010-09-10',:])
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(stock, check_date='2010-09-13 00:00:00', SHORT=12, LONG=26, MID=9, unit=fre)
- print(x_macd_macd, x_macd_dif, x_macd_dea)
|