qbh.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. from jqdatasdk import *
  2. import pandas as pd
  3. import pymysql
  4. from sqlalchemy import create_engine
  5. import threading
  6. from datetime import datetime as dt
  7. auth('18019403367', 'Qwer4321')
  8. starttime = dt.now()
  9. # 连接数据库
  10. # db_stk_sql = pymysql.connect(host='localhost',
  11. # user='root',
  12. # port=3307,
  13. # password='r6kEwqWU9!v3',
  14. # database='stocks',
  15. # connect_timeout=600)
  16. #
  17. #
  18. # db_qbh = pymysql.connect(host='localhost',
  19. # user='root',
  20. # port=3307,
  21. # password='r6kEwqWU9!v3',
  22. # database='qbh',
  23. # charset='utf8')
  24. #
  25. #
  26. # cursor = db_qbh.cursor()
  27. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
  28. engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  29. stocks = list(get_all_securities(['stock'], date='2022-02-01').index)
  30. # stocks =stocks[0:70]
  31. thd = threading.local()
  32. # def qbh(stocks, engine, engine_backup):
  33. fre = '30m'
  34. stk = locals()
  35. # 获取数据存入DataFrame
  36. for stock in stocks:
  37. stk['stk'+stock] = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`'
  38. % (stock, fre), engine2)
  39. # print(stock, stk['stk'+stock[:6]])
  40. print("###############################################################################################################"
  41. "###############################################################################################################"
  42. "###############################################################################################################"
  43. "###############################################################################################################"
  44. "###############################################################################################################"
  45. "###############################################################################################################"
  46. "###############################################################################################################")
  47. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh?charset=utf8')
  48. def qbh(stocks, engine, engine_backup):
  49. for stock in stocks:
  50. thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  51. # print(new_df.head())
  52. thd.df_day = stk['stk' + stock]
  53. for i in thd.df_day.index:
  54. if i == 0 or i == 1:
  55. thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
  56. # 不包含
  57. elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
  58. and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
  59. or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
  60. and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
  61. thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
  62. # 包含
  63. else:
  64. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  65. # 左高,下降
  66. if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
  67. thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
  68. thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
  69. else:
  70. # 右高,上升
  71. thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
  72. thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
  73. thd.new_df.to_sql('stk%s_%s' % (stock, fre), con=engine, index=True, if_exists='append')
  74. with engine.connect() as con:
  75. con.execute('ALTER TABLE `stk%s_%s` ADD PRIMARY KEY (`date`);' % (stock, fre))
  76. # thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
  77. # with engine_backup.connect() as con_backup:
  78. # con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
  79. # thd.new_df.to_csv(
  80. # '/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220211qbh/qbh%s.csv' % stock[:6])
  81. print(stock)
  82. print("**************")
  83. #
  84. # # new_df.to_csv('new_df.csv')
  85. #
  86. # #return new_df
  87. engine = []
  88. engine_backup = []
  89. #
  90. #
  91. #
  92. # 开始去包含
  93. # qbh(stocks)
  94. thread_list = []
  95. step = 100
  96. times_engine = 0
  97. for m in range(0, len(stocks), step):
  98. engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh?charset=utf8'))
  99. engine_backup.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8'))
  100. thread = threading.Thread(target=qbh, args=(stocks[m:m + step], engine[times_engine], engine_backup[times_engine]))
  101. times_engine =times_engine + 1
  102. thread.start()
  103. thread_list.append(thread)
  104. for thread in thread_list:
  105. thread.join()
  106. #
  107. endtime = dt.now()
  108. print((endtime-starttime).seconds)