1234567891011121314151617181920212223242526272829303132333435 |
- # coding=utf-8
- from xtquant import xtdata
- from datetime import datetime as dt
- import pandas as pd
- from sqlalchemy import create_engine
- path = 'c:\\qmt\\userdata_mini'
- if __name__ == '__main__':
- fre = '1d'
- stocks = xtdata.get_stock_list_in_sector('沪深A股')
- print(stocks, '\n')
- stocks.sort()
- # df_data = xtdata.get_local_data(field_list=[], stock_code=stocks, start_time='', end_time='',
- # period='1d', count=-1)
- # print(df_data)
- for s in stocks[0:4]:
- print(s)
- cq = xtdata.get_divid_factors(s, start_time='19910101', end_time='20130115')
- print(cq)
- df_data = xtdata.get_local_data(field_list=[], stock_code=[s], start_time='', end_time='',
- period='1d', count=-1, dividend_type='back')
- df = pd.concat([df_data[i].T for i in ['time', 'open', 'high', 'low', 'close', 'volume', 'amount']], axis=1)
- df.columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'amount']
- df['time'] = df['time'].apply(lambda x: dt.fromtimestamp(x / 1000.0))
- # print(df)
- df['time'] = pd.to_datetime(df['time'], unit='ms')
- df['time'] = pd.to_datetime(df['time'], format='%Y-%m-%d')
- df.reset_index(drop=True, inplace=True)
- # df['time'] = df['time'] + timedelta(hours=8)
- print(df)
|