real_time_order_MA_HLFX_1025.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. from jqdatasdk import *
  2. from datetime import datetime as dt
  3. import pandas as pd
  4. import pymysql
  5. from sqlalchemy import create_engine
  6. import time
  7. from xtquant.xttrader import XtQuantTrader, XtQuantTraderCallback
  8. from xtquant.xttype import StockAccount
  9. from xtquant import xtconstant
  10. from xtquant import xtdata
  11. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  12. # auth('18521506014', 'Abc123!@#')
  13. #启动交易系统
  14. path = 'c:\\qmt\\userdata_mini'
  15. # session_id为会话编号,策略使用方对于不同的Python策略需要使用不同的会话编号
  16. session_id = 20221123
  17. # connect_result = xt_trader.connect()
  18. # if connect_result == 0:
  19. # print('QMTmini 已连接')
  20. # else:
  21. # print('连接失败')
  22. # account = StockAccount('920000207040', 'SECURITY') # xt_trader为XtQuant API实例对象
  23. # positions = xt_trader.query_stock_positions(account)
  24. fre = '1d'
  25. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  26. # engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  27. db_pool = pymysql.connect(host='localhost',
  28. user='root',
  29. port=3307,
  30. password='r6kEwqWU9!v3',
  31. database='hlfx_pool')
  32. cursor_pool = db_pool.cursor()
  33. fut = locals()
  34. print(dt.now(), '开始寻找MA5趋势!')
  35. def real_price(datas):
  36. return datas
  37. def XtTrader(new_keep_stock):
  38. # 获取账号信息
  39. # account = StockAccount('888824600221', 'CREDIT') #xt_trader为XtQuant API实例对象
  40. account = StockAccount('920000207040', 'SECURITY') # xt_trader为XtQuant API实例对象
  41. # print('acc:', account.account_type, account.account_id)
  42. # print("query asset:")
  43. asset = xt_trader.query_stock_asset(account)
  44. xtdata.subscribe_whole_quote(new_keep_stock, callback=real_price)
  45. positions = xt_trader.query_stock_positions(account)
  46. if asset:
  47. print("asset:")
  48. print(asset.account_type, asset.account_id, asset.cash, asset.frozen_cash, asset.market_value,
  49. asset.total_asset)
  50. # 开始交易
  51. for i in new_keep_stock:
  52. print(i)
  53. # price = get_bars(i.replace('SH', 'XSHG').replace('SZ', 'XSHE'), count=1, unit=fre, fields=['close'],
  54. # include_now=True).iloc[-1].at['close']
  55. datas = real_price()
  56. price = datas[i]['lastPrice']
  57. print('price:', price)
  58. exit()
  59. print(asset.cash / price)
  60. if asset.cash > 2000:
  61. volume = int((asset.cash / 2 / price) // 100 * 100)
  62. print('volume:', volume)
  63. order_id = xt_trader.order_stock(account, i, xtconstant.STOCK_BUY, volume, xtconstant.LATEST_PRICE, price, 'strategy1', 'order_test')
  64. print(order_id)
  65. # for i in positions:
  66. # price = get_bars(i.replace('SH', 'XSHG').replace('SZ', 'XSHE'), count=1, unit=fre, fields=['close'],
  67. # include_now=True).iloc[-1].at['close']
  68. # if Sell_Trader(i):
  69. # print('yao maihu de gupiao !!!!!!!!!!!', i.stock_code)
  70. # order_id = xt_trader.order_stock(account, i, xtconstant.STOCK_SELL,
  71. # 1000, xtconstant.FIX_PRICE, 10.90, 'strategy1', 'order_test')
  72. # print(positions[1].stock_code, positions[1].volume)
  73. print('今日成交:')
  74. for trades in xt_trader.query_stock_trades(account):
  75. print(trades.stock_code, trades.traded_volume, trades.traded_price)
  76. positions = xt_trader.query_stock_positions(account)
  77. print("positions:", len(positions))
  78. if len(positions) != 0:
  79. print("last position:")
  80. print("{0} {1} {2}".format(positions[-1].account_id, positions[-1].stock_code, positions[-1].volume))
  81. print(positions)
  82. xt_trader.stop()
  83. def Sell_Trader(stock, account, positions, volume):
  84. price = get_bars(stock, count=1, unit=fre, fields=['close'],
  85. include_now=True).iloc[-1].at['close']
  86. print(type(stock.replace('XSHG', 'SH').replace('XSHE', 'SZ')),stock.replace('XSHG', 'SH').replace('XSHE', 'SZ') )
  87. order_id = xt_trader.order_stock(account, stock.replace('XSHG', 'SH').replace('XSHE', 'SZ'), xtconstant.STOCK_SELL,
  88. volume, xtconstant.LATEST_PRICE, 0, 'strategy1', 'order_test')
  89. print(order_id, i)
  90. while True:
  91. # print('进入循环')
  92. stocks = xtdata.get_stock_list_in_sector('沪深A股')
  93. now_date = dt.now()
  94. date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
  95. date_morning_end = now_date.replace(hour=11, minute=31, second=0)
  96. date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
  97. date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
  98. if True:
  99. # if date_morning_begin < now_date < date_morning_end or date_afternooe_begin < now_date < date_afternooe_end:
  100. # time.sleep(1800)
  101. # 后续的所有示例将使用该实例对象
  102. xt_trader = XtQuantTrader(path, session_id)
  103. xt_trader.start()
  104. connect_result = xt_trader.connect()
  105. xtdata.subscribe_whole_quote(stocks, callback=real_price)
  106. try:
  107. if connect_result == 0:
  108. print('QMTmini 已连接')
  109. else:
  110. print('连接失败')
  111. account = StockAccount('920000207040', 'SECURITY') # xt_trader为XtQuant API实例对象
  112. positions = xt_trader.query_stock_positions(account)
  113. print(positions)
  114. except BaseException:
  115. continue
  116. for i in positions:
  117. # print(i.stock_code, i.volume)
  118. volume = i.volume
  119. stock = i.stock_code.replace('SH', 'XSHG').replace('SZ', 'XSHE')
  120. df_stock = get_bars(stock, count=60, unit=fre,
  121. fields=['date', 'open', 'close', 'high', 'low', 'volume'],
  122. include_now=True, df=True)
  123. # price = df_stock.iloc[-1].at['close']
  124. datas = real_price()
  125. price = datas[i.stock_code]['lastPrice']
  126. MA5_1 = df_stock['close'][-7:-2].mean()
  127. MA5 = df_stock['close'][-6:-1].mean()
  128. MA10 = df_stock['close'][-11:-1].mean()
  129. MA20 = df_stock['close'][-21:-1].mean()
  130. if price < MA5 or MA5 < MA5_1 or price > MA5 * 1.12:
  131. print(MA5, MA5_1)
  132. Sell_Trader(stock, account, positions, volume)
  133. for fre in ['1d']:
  134. print('开始:', fre)
  135. results = []
  136. try:
  137. stock_pool = pd.read_sql_query(
  138. 'select value from `%s`' % fre, engine_hlfx_pool)
  139. stock_pool = stock_pool.iloc[-1, 0].split(",")
  140. print(stock_pool)
  141. except BaseException:
  142. continue
  143. for stock in stock_pool:
  144. # print(stock)
  145. try:
  146. df_stock = get_bars(stock, count=60, unit=fre, fields=['date', 'open', 'close', 'high', 'low','volume'],
  147. include_now=True, df=True)
  148. # print('time=', df_stock.iloc[-1].at['date'])
  149. # price = df_stock.iloc[-1].at['close']
  150. datas = real_price()
  151. price = datas[i]['lastPrice']
  152. price_open = df_stock.iloc[-1].at['open']
  153. MA5_1 = df_stock['close'][-7:-2].mean()
  154. MA5 = df_stock['close'][-6:-1].mean()
  155. MA10 = df_stock['close'][-11:-1].mean()
  156. MA20 = df_stock['close'][-21:-1].mean()
  157. # print(price,price_open, 'ma5_1:',MA5_1, 'ma5:', MA5,MA10)
  158. if (price > price_open) & (price > MA5) & (MA5 > MA5_1) & (price < MA5 * 1.03) & (MA20 < MA10) \
  159. & (df_stock.iloc[-1].at['volume'] > df_stock.iloc[-2].at['volume']):
  160. print(stock)
  161. results.append(stock)
  162. elif price < MA5 or MA5<MA5_1 or price > MA5*1.09:
  163. stock_pool.remove(stock)
  164. print(stock, '已失败!')
  165. except BaseException:
  166. continue
  167. results = list(set(results))
  168. print(results)
  169. now_time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
  170. # results_list =','.join(results)
  171. # print(fre, '\n', results_list)
  172. if len(results) == 0:
  173. continue
  174. else:
  175. num_industry = get_industry(results)
  176. print(num_industry)
  177. industry_list = []
  178. for key in num_industry.values():
  179. for key2 in key.values():
  180. industry_list.append(key2['industry_name'])
  181. industry_list = pd.value_counts(industry_list)
  182. # 最热集中的n个板块
  183. max_industry_list = list(industry_list[0:3].index)
  184. results_industry = []
  185. for key, value in num_industry.items():
  186. for key2 in value.values():
  187. if key2['industry_name'] in max_industry_list:
  188. results_industry.append(key)
  189. print('suoyou:', set(results_industry))
  190. results_industry = ','.join(set(results_industry))
  191. print(fre, '\n', results_industry)
  192. sql = "INSERT INTO MA5_%s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'),
  193. results_industry)
  194. cursor_pool.execute(sql)
  195. db_pool.commit()
  196. print(len(results_industry), results_industry)
  197. print(dt.now(), '数据库数据已赋值!')
  198. # 取值交易
  199. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  200. # stocks = xtdata.get_stock_list_in_sector('沪深A股')
  201. keep_stocks = pd.read_sql_query(
  202. 'select value from `MA5_%s`' % fre, engine_hlfx_pool)
  203. keep_stocks = keep_stocks.iloc[-1, 0].split(",")
  204. new_keep_stock = [stock.replace('XSHG', 'SH').replace('XSHE', 'SZ') for stock in keep_stocks]
  205. print(new_keep_stock)
  206. price = get_bars(keep_stocks, count=1, unit=fre, fields=['close'])
  207. XtTrader(new_keep_stock)
  208. xt_trader.run_forever()
  209. time.sleep(1800)
  210. elif now_date > date_afternooe_end:
  211. pass
  212. # print("MA5_收盘了", now_date)
  213. # break