123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- from jqdatasdk import *
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import threading
- from datetime import datetime as dt
- from jqdatasdk.technical_analysis import *
- #原始版本
- auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
- # auth('18521506014', 'Abc123!@#')
- stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
- # stocks = stocks[0:200]
- def hlfx(stocks, engine_stock, engine_hlfx):
- for thd.stock in stocks:
- print(thd.stock)
- if ('stk%s_%s' % (thd.stock, fre)) in table_list:
- # 有历史数据
- index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 0]
- startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 1]
- # thd.get_price = pd.read_sql_query(
- # 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
- # thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
- thd.get_price = df.loc[thd.stock]
- thd.df_day = pd.read_sql_query(
- 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine_hlfx)
- # 先处理去包含
- for i in thd.get_price.index:
- # 不包含
- if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
- and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
- or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
- and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
- thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
- # 包含
- else:
- # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
- # 左高,下降
- if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
- thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
- thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
- else:
- # 右高,上升
- thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
- thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
- # 寻找顶底分型
- if len(thd.df_day.index) > 2:
- x = len(thd.df_day.index)-1
- m = x - 1
- # 底
- if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
- thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
- thd.df_day.loc[x, 'HL'] = 'L*'
- while m:
- if thd.df_day.loc[m, 'HL'] == 'H':
- if (x - m) > 3:
- thd.df_day.loc[x, 'HL'] = 'L'
- # 此处可以获得MACD指标
- # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
- # pass
- print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '\n',
- '笔形成————买买买买买!!')
- results.append(thd.stock)
- print('222')
- # break
- elif (thd.df_day.loc[m, 'HL'] == 'L'):
- if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
- # 前一个为底,且中间存在不包含 or 更低的底
- thd.df_day.loc[x, 'HL'] = 'L'
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[x, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[m, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
- # pass
- # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
- # m_macd_dif[thd.stock])
- # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
- # x_macd_dif[thd.stock])
- print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], 'MACD背驰————买吗?!')
- results.append(thd.stock)
- print('333')
- break
- else:
- # 底更低但没有背驰
- break
- m = m - 1
- if m == 0:
- # 第一个底
- thd.df_day.loc[x, 'HL'] = 'L'
- results.append(thd.stock)
- print('444')
- # 顶
- elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
- thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
- thd.df_day.loc[x, 'HL'] = 'H*'
- while m:
- if thd.df_day.loc[m, 'HL'] == 'L':
- if x - m > 3:
- thd.df_day.loc[x, 'HL'] = 'H'
- print(thd.stock, '!!!!!!!', '\n', thd.df_day.loc[x, 'date'], '笔形成————卖卖卖卖卖卖卖!')
- # pass
- results_short.append(thd.stock)
- if thd.stock in results:
- results.remove(thd.stock)
- # break
- elif (thd.df_day.loc[m, 'HL'] == 'H'):
- if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
- # 前一个为顶,且中间存在不包含 or 更高的顶
- thd.df_day.loc[x, 'HL'] = 'H'
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[x, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[m, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- if x_macd_dif[thd.stock] < m_macd_dif[thd.stock]:
- # pass
- print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
- results_short.append(thd.stock)
- if thd.stock in results:
- results.remove(thd.stock)
- break
- break
- m = m - 1
- if m == 0:
- thd.df_day.loc[x, 'HL'] = 'H'
- results_short.append(thd.stock)
- if thd.stock in results:
- results.remove(thd.stock)
- else:
- thd.df_day.loc[x, 'HL'] = '-'
- # 更新数据库
- # 可以使用normalize_code(code) 方法 改变代码格式
- # thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
- else:
- # 没有历史数据表
- thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
- thd.get_price = pd.read_sql_query(
- 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
- # 先处理去包含
- for i in thd.get_price.index:
- if i == 0 or i == 1:
- thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
- # 不包含
- elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
- and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
- or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
- and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
- thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
- # 包含
- else:
- # 左高,下降
- if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
- thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
- thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
- else:
- # 右高,上升
- thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
- thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
- if len(thd.df_day.index) > 2:
- # 寻找顶底分型
- x = len(thd.df_day.index)-1
- m = x - 1
- # 底
- if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
- thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
- thd.df_day.loc[x, 'HL'] = 'L*'
- while m:
- if thd.df_day.loc[m, 'HL'] == 'H':
- if (x - m) > 3:
- thd.df_day.loc[x, 'HL'] = 'L'
- # 此处可以获得MACD指标
- # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
- # pass
- print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
- results.append(thd.stock)
- # break
- elif (thd.df_day.loc[m, 'HL'] == 'L'):
- if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
- # 前一个为底,且中间存在不包含 or 更低的底
- thd.df_day.loc[x, 'HL'] = 'L'
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[x, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[m, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
- # pass
- # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
- # m_macd_dif[thd.stock])
- # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
- # x_macd_dif[thd.stock])
- print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],
- 'MACD背驰————买吗?!')
- results.append(thd.stock)
- break
- else:
- break
- m = m - 1
- if m == 0:
- thd.df_day.loc[x, 'HL'] = 'L'
- results.append(thd.stock)
- # 顶
- elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
- thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
- # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
- # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
- thd.df_day.loc[x, 'HL'] = 'H*'
- while m:
- if thd.df_day.loc[m, 'HL'] == 'L':
- if x - m > 3:
- thd.df_day.loc[x, 'HL'] = 'H'
- print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
- # pass
- results.remove(thd.stock)
- # break
- elif (thd.df_day.loc[m, 'HL'] == 'H'):
- if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
- # 前一个为顶,且中间存在不包含 or 更高的顶
- thd.df_day.loc[x, 'HL'] = 'H'
- x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[x, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
- check_date=thd.df_day.loc[m, 'date'],
- SHORT=12, LONG=26, MID=9, unit=fre)
- if x_macd_dif[thd.stock] < m_macd_dif[
- thd.stock]:
- # pass
- print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
- results.remove(thd.stock)
- break
- break
- m = m - 1
- if m == 0:
- thd.df_day.loc[x, 'HL'] = 'H'
- results.remove(thd.stock)
- else:
- thd.df_day.loc[x, 'HL'] = '-'
- # print(thd.df_day[-20:])
- # 更新数据库
- # thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
- start = dt.now()
- while True:
- now_date = dt.now()
- date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
- date_morning_end = now_date.replace(hour=11, minute=31, second=0)
- date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
- date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
- # print(now_date,date_morning_begin,date_morning_end,date_afternooe_begin,date_afternooe_end)
- # if date_morning_begin < now_date < date_afternooe_end:
- if True:
- for fre in ['1d']:
- start = dt.now()
- print(fre)
- # 连接数据库
- db = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='hlfx')
- cursor = db.cursor()
- cursor.execute("show tables like '%%%s%%' " % fre)
- table_list = [tuple[0] for tuple in cursor.fetchall()]
- print('取得 table_list %s' % fre)
- db_pool = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='hlfx_pool')
- cursor_pool = db_pool.cursor()
- stk = locals()
- thd = threading.local()
- # 进程准备
- step = 400
- thread_list = []
- engine_stock = []
- engine_hlfx = []
- times_engine = 0
- engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
- # 获得hlfx_pool池子
- # results = pd.read_sql_query(
- # 'select value from `%s`' % fre, engine_hlfx_pool)
- # for i in range(0, len(results)):
- # print(len(results.iloc[i, 0].split(",")))
- results = pd.read_sql_query(
- 'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(",")
- results_short = []
- print('数据库读取', len(results))
- df = get_bars(stocks, count=5, unit=fre,
- fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
- print(df, type(df))
- print(df.loc['603566.XSHG'])
- print(dt.now(), 'get_bars 成功')
- exit()
- for i in range(0, len(stocks), step):
- engine_stock.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
- engine_hlfx.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
- thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine_stock[times_engine], engine_hlfx[times_engine]))
- times_engine = times_engine + 1
- thread.start()
- thread_list.append(thread)
- for thread in thread_list:
- thread.join()
- db.close()
- time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
- results_list =','.join(set(results))
- print(set(results))
- sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
- cursor_pool.execute(sql)
- db_pool.commit()
- print(fre, '\n', '做多:', len(set(results)), set(results))
- print('做空', len(set(results_short)), set(results_short))
- end= dt.now()
- print('总时长:', (end - start).seconds)
- elif now_date>date_afternooe_end:
- pass
- # print("HLFX_收盘了",now_date)
- # break
|