real_time_update_qbh_hlfx_1025.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. from jqdatasdk import *
  2. import pandas as pd
  3. import pymysql
  4. from sqlalchemy import create_engine
  5. import threading
  6. from datetime import datetime as dt
  7. from jqdatasdk.technical_analysis import *
  8. #原始版本
  9. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  10. # auth('18521506014', 'Abc123!@#')
  11. stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  12. # stocks = stocks[0:200]
  13. def hlfx(stocks, engine_stock, engine_hlfx):
  14. for thd.stock in stocks:
  15. print(thd.stock)
  16. if ('stk%s_%s' % (thd.stock, fre)) in table_list:
  17. # 有历史数据
  18. index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 0]
  19. startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 1]
  20. # thd.get_price = pd.read_sql_query(
  21. # 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
  22. # thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
  23. thd.get_price = df.loc[thd.stock]
  24. thd.df_day = pd.read_sql_query(
  25. 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine_hlfx)
  26. # 先处理去包含
  27. for i in thd.get_price.index:
  28. # 不包含
  29. if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  30. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  31. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  32. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  33. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  34. # 包含
  35. else:
  36. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  37. # 左高,下降
  38. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  39. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  40. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  41. else:
  42. # 右高,上升
  43. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  44. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  45. # 寻找顶底分型
  46. if len(thd.df_day.index) > 2:
  47. x = len(thd.df_day.index)-1
  48. m = x - 1
  49. # 底
  50. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  51. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  52. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  53. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  54. thd.df_day.loc[x, 'HL'] = 'L*'
  55. while m:
  56. if thd.df_day.loc[m, 'HL'] == 'H':
  57. if (x - m) > 3:
  58. thd.df_day.loc[x, 'HL'] = 'L'
  59. # 此处可以获得MACD指标
  60. # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
  61. # pass
  62. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '\n',
  63. '笔形成————买买买买买!!')
  64. results.append(thd.stock)
  65. print('222')
  66. # break
  67. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  68. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  69. # 前一个为底,且中间存在不包含 or 更低的底
  70. thd.df_day.loc[x, 'HL'] = 'L'
  71. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  72. check_date=thd.df_day.loc[x, 'date'],
  73. SHORT=12, LONG=26, MID=9, unit=fre)
  74. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  75. check_date=thd.df_day.loc[m, 'date'],
  76. SHORT=12, LONG=26, MID=9, unit=fre)
  77. if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
  78. # pass
  79. # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
  80. # m_macd_dif[thd.stock])
  81. # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
  82. # x_macd_dif[thd.stock])
  83. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], 'MACD背驰————买吗?!')
  84. results.append(thd.stock)
  85. print('333')
  86. break
  87. else:
  88. # 底更低但没有背驰
  89. break
  90. m = m - 1
  91. if m == 0:
  92. # 第一个底
  93. thd.df_day.loc[x, 'HL'] = 'L'
  94. results.append(thd.stock)
  95. print('444')
  96. # 顶
  97. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  98. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  99. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  100. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  101. thd.df_day.loc[x, 'HL'] = 'H*'
  102. while m:
  103. if thd.df_day.loc[m, 'HL'] == 'L':
  104. if x - m > 3:
  105. thd.df_day.loc[x, 'HL'] = 'H'
  106. print(thd.stock, '!!!!!!!', '\n', thd.df_day.loc[x, 'date'], '笔形成————卖卖卖卖卖卖卖!')
  107. # pass
  108. results_short.append(thd.stock)
  109. if thd.stock in results:
  110. results.remove(thd.stock)
  111. # break
  112. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  113. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  114. # 前一个为顶,且中间存在不包含 or 更高的顶
  115. thd.df_day.loc[x, 'HL'] = 'H'
  116. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  117. check_date=thd.df_day.loc[x, 'date'],
  118. SHORT=12, LONG=26, MID=9, unit=fre)
  119. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  120. check_date=thd.df_day.loc[m, 'date'],
  121. SHORT=12, LONG=26, MID=9, unit=fre)
  122. if x_macd_dif[thd.stock] < m_macd_dif[thd.stock]:
  123. # pass
  124. print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
  125. results_short.append(thd.stock)
  126. if thd.stock in results:
  127. results.remove(thd.stock)
  128. break
  129. break
  130. m = m - 1
  131. if m == 0:
  132. thd.df_day.loc[x, 'HL'] = 'H'
  133. results_short.append(thd.stock)
  134. if thd.stock in results:
  135. results.remove(thd.stock)
  136. else:
  137. thd.df_day.loc[x, 'HL'] = '-'
  138. # 更新数据库
  139. # 可以使用normalize_code(code) 方法 改变代码格式
  140. # thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
  141. else:
  142. # 没有历史数据表
  143. thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  144. thd.get_price = pd.read_sql_query(
  145. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
  146. # 先处理去包含
  147. for i in thd.get_price.index:
  148. if i == 0 or i == 1:
  149. thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
  150. # 不包含
  151. elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  152. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  153. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  154. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  155. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  156. # 包含
  157. else:
  158. # 左高,下降
  159. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  160. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  161. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  162. else:
  163. # 右高,上升
  164. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  165. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  166. if len(thd.df_day.index) > 2:
  167. # 寻找顶底分型
  168. x = len(thd.df_day.index)-1
  169. m = x - 1
  170. # 底
  171. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  172. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  173. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  174. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  175. thd.df_day.loc[x, 'HL'] = 'L*'
  176. while m:
  177. if thd.df_day.loc[m, 'HL'] == 'H':
  178. if (x - m) > 3:
  179. thd.df_day.loc[x, 'HL'] = 'L'
  180. # 此处可以获得MACD指标
  181. # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
  182. # pass
  183. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
  184. results.append(thd.stock)
  185. # break
  186. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  187. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  188. # 前一个为底,且中间存在不包含 or 更低的底
  189. thd.df_day.loc[x, 'HL'] = 'L'
  190. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  191. check_date=thd.df_day.loc[x, 'date'],
  192. SHORT=12, LONG=26, MID=9, unit=fre)
  193. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  194. check_date=thd.df_day.loc[m, 'date'],
  195. SHORT=12, LONG=26, MID=9, unit=fre)
  196. if x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
  197. # pass
  198. # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
  199. # m_macd_dif[thd.stock])
  200. # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
  201. # x_macd_dif[thd.stock])
  202. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],
  203. 'MACD背驰————买吗?!')
  204. results.append(thd.stock)
  205. break
  206. else:
  207. break
  208. m = m - 1
  209. if m == 0:
  210. thd.df_day.loc[x, 'HL'] = 'L'
  211. results.append(thd.stock)
  212. # 顶
  213. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  214. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  215. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  216. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  217. thd.df_day.loc[x, 'HL'] = 'H*'
  218. while m:
  219. if thd.df_day.loc[m, 'HL'] == 'L':
  220. if x - m > 3:
  221. thd.df_day.loc[x, 'HL'] = 'H'
  222. print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  223. # pass
  224. results.remove(thd.stock)
  225. # break
  226. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  227. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  228. # 前一个为顶,且中间存在不包含 or 更高的顶
  229. thd.df_day.loc[x, 'HL'] = 'H'
  230. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  231. check_date=thd.df_day.loc[x, 'date'],
  232. SHORT=12, LONG=26, MID=9, unit=fre)
  233. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  234. check_date=thd.df_day.loc[m, 'date'],
  235. SHORT=12, LONG=26, MID=9, unit=fre)
  236. if x_macd_dif[thd.stock] < m_macd_dif[
  237. thd.stock]:
  238. # pass
  239. print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
  240. results.remove(thd.stock)
  241. break
  242. break
  243. m = m - 1
  244. if m == 0:
  245. thd.df_day.loc[x, 'HL'] = 'H'
  246. results.remove(thd.stock)
  247. else:
  248. thd.df_day.loc[x, 'HL'] = '-'
  249. # print(thd.df_day[-20:])
  250. # 更新数据库
  251. # thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
  252. start = dt.now()
  253. while True:
  254. now_date = dt.now()
  255. date_morning_begin = now_date.replace(hour=9, minute=25, second=0)
  256. date_morning_end = now_date.replace(hour=11, minute=31, second=0)
  257. date_afternooe_begin = now_date.replace(hour=13, minute=0, second=0)
  258. date_afternooe_end = now_date.replace(hour=15, minute=0, second=0)
  259. # print(now_date,date_morning_begin,date_morning_end,date_afternooe_begin,date_afternooe_end)
  260. # if date_morning_begin < now_date < date_afternooe_end:
  261. if True:
  262. for fre in ['1d']:
  263. start = dt.now()
  264. print(fre)
  265. # 连接数据库
  266. db = pymysql.connect(host='localhost',
  267. user='root',
  268. port=3307,
  269. password='r6kEwqWU9!v3',
  270. database='hlfx')
  271. cursor = db.cursor()
  272. cursor.execute("show tables like '%%%s%%' " % fre)
  273. table_list = [tuple[0] for tuple in cursor.fetchall()]
  274. print('取得 table_list %s' % fre)
  275. db_pool = pymysql.connect(host='localhost',
  276. user='root',
  277. port=3307,
  278. password='r6kEwqWU9!v3',
  279. database='hlfx_pool')
  280. cursor_pool = db_pool.cursor()
  281. stk = locals()
  282. thd = threading.local()
  283. # 进程准备
  284. step = 400
  285. thread_list = []
  286. engine_stock = []
  287. engine_hlfx = []
  288. times_engine = 0
  289. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  290. # 获得hlfx_pool池子
  291. # results = pd.read_sql_query(
  292. # 'select value from `%s`' % fre, engine_hlfx_pool)
  293. # for i in range(0, len(results)):
  294. # print(len(results.iloc[i, 0].split(",")))
  295. results = pd.read_sql_query(
  296. 'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(",")
  297. results_short = []
  298. print('数据库读取', len(results))
  299. df = get_bars(stocks, count=5, unit=fre,
  300. fields=['date', 'open', 'close', 'high', 'low', 'volume', 'money'], include_now=True, df=True)
  301. print(df, type(df))
  302. print(df.loc['603566.XSHG'])
  303. print(dt.now(), 'get_bars 成功')
  304. exit()
  305. for i in range(0, len(stocks), step):
  306. engine_stock.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
  307. engine_hlfx.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
  308. thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine_stock[times_engine], engine_hlfx[times_engine]))
  309. times_engine = times_engine + 1
  310. thread.start()
  311. thread_list.append(thread)
  312. for thread in thread_list:
  313. thread.join()
  314. db.close()
  315. time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
  316. results_list =','.join(set(results))
  317. print(set(results))
  318. sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
  319. cursor_pool.execute(sql)
  320. db_pool.commit()
  321. print(fre, '\n', '做多:', len(set(results)), set(results))
  322. print('做空', len(set(results_short)), set(results_short))
  323. end= dt.now()
  324. print('总时长:', (end - start).seconds)
  325. elif now_date>date_afternooe_end:
  326. pass
  327. # print("HLFX_收盘了",now_date)
  328. # break