updata_qbh_hlfx.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. from jqdatasdk import *
  2. import pandas as pd
  3. import pymysql
  4. from sqlalchemy import create_engine
  5. import threading
  6. from datetime import datetime as dt
  7. from jqdatasdk.technical_analysis import *
  8. auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  9. stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  10. # stocks = stocks[0:200]
  11. start = dt.now()
  12. for fre in ['1d']:
  13. start = dt.now()
  14. print(fre)
  15. # 连接数据库
  16. db = pymysql.connect(host='localhost',
  17. user='root',
  18. port=3307,
  19. password='r6kEwqWU9!v3',
  20. database='hlfx')
  21. cursor = db.cursor()
  22. cursor.execute("show tables like '%%%s%%' " % fre)
  23. table_list = [tuple[0] for tuple in cursor.fetchall()]
  24. print('取得 table_list %s' % fre)
  25. db_pool = pymysql.connect(host='localhost',
  26. user='root',
  27. port=3307,
  28. password='r6kEwqWU9!v3',
  29. database='hlfx_pool')
  30. cursor_pool = db_pool.cursor()
  31. stk = locals()
  32. thd = threading.local()
  33. def hlfx(stocks, engine_stock, engine_hlfx):
  34. for thd.stock in stocks:
  35. print(thd.stock)
  36. if ('stk%s_%s' % (thd.stock, fre)) in table_list:
  37. # 有历史数据
  38. index_len = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 0]
  39. startdate = pd.read_sql_table('stk%s_%s' % (thd.stock, fre), con=engine_hlfx).iloc[-1, 1]
  40. thd.get_price = pd.read_sql_query(
  41. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
  42. thd.get_price = thd.get_price.loc[thd.get_price['date'] > startdate]
  43. thd.df_day = pd.read_sql_query(
  44. 'select date,open,close,high,low,volume,money,HL from `stk%s_%s`' % (thd.stock, fre), engine_hlfx)
  45. # 先处理去包含
  46. for i in thd.get_price.index:
  47. # 不包含
  48. if (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  49. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  50. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  51. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  52. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  53. # 包含
  54. else:
  55. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  56. # 左高,下降
  57. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  58. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  59. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  60. else:
  61. # 右高,上升
  62. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  63. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  64. # 寻找顶底分型
  65. if len(thd.df_day.index) > 2:
  66. for x in range(index_len, len(thd.df_day.index)):
  67. m = x - 1
  68. # 底
  69. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  70. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  71. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  72. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  73. thd.df_day.loc[x, 'HL'] = 'L*'
  74. while m:
  75. if thd.df_day.loc[m, 'HL'] == 'H':
  76. if (x - m) > 3:
  77. thd.df_day.loc[x, 'HL'] = 'L'
  78. # 此处可以获得MACD指标
  79. # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
  80. if x == len(thd.df_day.index) - 1 :
  81. # pass
  82. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '\n', thd.df_day.loc[m, 'date'], '买买买买买!!')
  83. results.append(thd.stock)
  84. print('222')
  85. # break
  86. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  87. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  88. # 前一个为底,且中间存在不包含 or 更低的底
  89. thd.df_day.loc[x, 'HL'] = 'L'
  90. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  91. check_date=thd.df_day.loc[x, 'date'],
  92. SHORT=12, LONG=26, MID=9, unit=fre)
  93. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  94. check_date=thd.df_day.loc[m, 'date'],
  95. SHORT=12, LONG=26, MID=9, unit=fre)
  96. if x == len(thd.df_day.index) - 1 and x_macd_dif[thd.stock] > m_macd_dif[thd.stock]:
  97. # pass
  98. # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
  99. # m_macd_dif[thd.stock])
  100. # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
  101. # x_macd_dif[thd.stock])
  102. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], 'MACD背驰————买吗?!')
  103. results.append(thd.stock)
  104. print('333')
  105. break
  106. else:
  107. break
  108. m = m - 1
  109. if m == 0:
  110. thd.df_day.loc[x, 'HL'] = 'L'
  111. results.append(thd.stock)
  112. print('444')
  113. # 顶
  114. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  115. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  116. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  117. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  118. thd.df_day.loc[x, 'HL'] = 'H*'
  119. while m:
  120. if thd.df_day.loc[m, 'HL'] == 'L':
  121. if x - m > 3:
  122. thd.df_day.loc[x, 'HL'] = 'H'
  123. if x == len(thd.df_day.index) - 1:
  124. print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  125. # pass
  126. results_short.append(thd.stock)
  127. if thd.stock in results:
  128. results.remove(thd.stock)
  129. # break
  130. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  131. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  132. # 前一个为顶,且中间存在不包含 or 更高的顶
  133. thd.df_day.loc[x, 'HL'] = 'H'
  134. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  135. check_date=thd.df_day.loc[x, 'date'],
  136. SHORT=12, LONG=26, MID=9, unit=fre)
  137. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  138. check_date=thd.df_day.loc[m, 'date'],
  139. SHORT=12, LONG=26, MID=9, unit=fre)
  140. if x == len(thd.df_day.index) - 1 and x_macd_dif[thd.stock] < m_macd_dif[thd.stock]:
  141. # pass
  142. print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
  143. results_short.append(thd.stock)
  144. if thd.stock in results:
  145. results.remove(thd.stock)
  146. break
  147. break
  148. m = m - 1
  149. if m == 0:
  150. thd.df_day.loc[x, 'HL'] = 'H'
  151. results_short.append(thd.stock)
  152. if thd.stock in results:
  153. results.remove(thd.stock)
  154. else:
  155. thd.df_day.loc[x, 'HL'] = '-'
  156. # 更新数据库
  157. # 可以使用normalize_code(code) 方法 改变代码格式
  158. # thd.df_day[index_len + 1:].to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
  159. else:
  160. # 没有历史数据表
  161. thd.df_day = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  162. thd.get_price = pd.read_sql_query(
  163. 'select date,open,close,high,low,volume,money from `stk%s_%s`' % (thd.stock, fre), engine_stock)
  164. # 先处理去包含
  165. for i in thd.get_price.index:
  166. if i == 0 or i == 1:
  167. thd.df_day = pd.concat([thd.df_day, thd.get_price.iloc[[i]]], ignore_index=True)
  168. # 不包含
  169. elif (thd.df_day.iloc[-1, 3] > thd.get_price.loc[i, 'high']
  170. and thd.df_day.iloc[-1, 4] > thd.get_price.loc[i, 'low']) \
  171. or (thd.df_day.iloc[-1, 3] < thd.get_price.loc[i, 'high']
  172. and thd.df_day.iloc[-1, 4] < thd.get_price.loc[i, 'low']):
  173. thd.df_day = pd.concat([thd.df_day, thd.get_price.loc[[i]]], ignore_index=True)
  174. # 包含
  175. else:
  176. # 左高,下降
  177. if thd.df_day.iloc[-2, 3] > thd.df_day.iloc[-1, 3]:
  178. thd.df_day.iloc[-1, 3] = min(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  179. thd.df_day.iloc[-1, 4] = min(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  180. else:
  181. # 右高,上升
  182. thd.df_day.iloc[-1, 3] = max(thd.df_day.iloc[-1, 3], thd.get_price.loc[i, 'high'])
  183. thd.df_day.iloc[-1, 4] = max(thd.df_day.iloc[-1, 4], thd.get_price.loc[i, 'low'])
  184. if len(thd.df_day.index) > 2:
  185. # 寻找顶底分型
  186. for x in range(2, len(thd.df_day.index)):
  187. m = x - 1
  188. # 底
  189. if ((thd.df_day.loc[x, 'high'] > thd.df_day.loc[x - 1, 'high']) and (
  190. thd.df_day.loc[x - 2, 'high'] > thd.df_day.loc[x - 1, 'high'])):
  191. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  192. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  193. thd.df_day.loc[x, 'HL'] = 'L*'
  194. while m:
  195. if thd.df_day.loc[m, 'HL'] == 'H':
  196. if (x - m) > 3:
  197. thd.df_day.loc[x, 'HL'] = 'L'
  198. # 此处可以获得MACD指标
  199. # pre-macd_dif, pre-macd_dea, pre-macd_macd = MACD(thd.stock,check_date=thd.df_day.loc[m, 'datetime'], SHORT = 12, LONG = 26, MID = 9)
  200. if x == len(thd.df_day.index) - 1:
  201. # pass
  202. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'], '买买买买买!!')
  203. results.append(thd.stock)
  204. # break
  205. elif (thd.df_day.loc[m, 'HL'] == 'L'):
  206. if thd.df_day.loc[x - 1, 'low'] < thd.df_day.loc[m - 1, 'low']:
  207. # 前一个为底,且中间存在不包含 or 更低的底
  208. thd.df_day.loc[x, 'HL'] = 'L'
  209. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  210. check_date=thd.df_day.loc[x, 'date'],
  211. SHORT=12, LONG=26, MID=9, unit=fre)
  212. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  213. check_date=thd.df_day.loc[m, 'date'],
  214. SHORT=12, LONG=26, MID=9, unit=fre)
  215. if x == len(thd.df_day.index) - 1 and x_macd_dif[thd.stock] > m_macd_dif[
  216. thd.stock]:
  217. # pass
  218. # print(thd.df_day.loc[m, 'date'], thd.df_day.loc[m, 'low'],
  219. # m_macd_dif[thd.stock])
  220. # print(thd.df_day.loc[x, 'date'], thd.df_day.loc[x, 'low'],
  221. # x_macd_dif[thd.stock])
  222. print(thd.stock, '$$$$$$$', '\n', thd.df_day.loc[x, 'date'],
  223. 'MACD背驰————买吗?!')
  224. results.append(thd.stock)
  225. break
  226. else:
  227. break
  228. m = m - 1
  229. if m == 0:
  230. thd.df_day.loc[x, 'HL'] = 'L'
  231. results.append(thd.stock)
  232. # 顶
  233. elif ((thd.df_day.loc[x, 'high'] < thd.df_day.loc[x - 1, 'high']) and (
  234. thd.df_day.loc[x - 2, 'high'] < thd.df_day.loc[x - 1, 'high'])):
  235. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  236. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  237. thd.df_day.loc[x, 'HL'] = 'H*'
  238. while m:
  239. if thd.df_day.loc[m, 'HL'] == 'L':
  240. if x - m > 3:
  241. thd.df_day.loc[x, 'HL'] = 'H'
  242. if x == len(thd.df_day.index) - 1:
  243. print(thd.stock, '!!!!!!!', '\n', '卖卖卖卖卖卖卖!')
  244. # pass
  245. results.remove(thd.stock)
  246. # break
  247. elif (thd.df_day.loc[m, 'HL'] == 'H'):
  248. if thd.df_day.loc[x - 1, 'high'] > thd.df_day.loc[m - 1, 'high']:
  249. # 前一个为顶,且中间存在不包含 or 更高的顶
  250. thd.df_day.loc[x, 'HL'] = 'H'
  251. x_macd_dif, x_macd_dea, x_macd_macd = MACD(thd.stock,
  252. check_date=thd.df_day.loc[x, 'date'],
  253. SHORT=12, LONG=26, MID=9, unit=fre)
  254. m_macd_dif, m_macd_dea, m_macd_macd = MACD(thd.stock,
  255. check_date=thd.df_day.loc[m, 'date'],
  256. SHORT=12, LONG=26, MID=9, unit=fre)
  257. if x == len(thd.df_day.index) - 1 and x_macd_dif[thd.stock] < m_macd_dif[
  258. thd.stock]:
  259. # pass
  260. print(thd.stock, '/\/\/\/\/\/\/', '顶背离了!!!!')
  261. results.remove(thd.stock)
  262. break
  263. break
  264. m = m - 1
  265. if m == 0:
  266. thd.df_day.loc[x, 'HL'] = 'H'
  267. results.remove(thd.stock)
  268. else:
  269. thd.df_day.loc[x, 'HL'] = '-'
  270. print(thd.df_day[-20:])
  271. # 更新数据库
  272. # thd.df_day.to_sql('stk%s_%s' % (thd.stock, fre), con=engine_hlfx, index=True, if_exists='append')
  273. step = 500
  274. thread_list = []
  275. engine_stock = []
  276. engine_hlfx = []
  277. times_engine = 0
  278. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  279. results= pd.read_sql_query(
  280. 'select value from `%s`' % fre, engine_hlfx_pool)
  281. results = results.iloc[-1, 0]
  282. results = results.split(",")
  283. results_short=[]
  284. print('数据库读取', results, type(results))
  285. # for i in range(0, len(stocks), step):
  286. # engine_stock.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8'))
  287. # engine_hlfx.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
  288. # thread = threading.Thread(target=hlfx, args=(stocks[i:i + step], engine_stock[times_engine], engine_hlfx[times_engine]))
  289. # times_engine = times_engine + 1
  290. # thread.start()
  291. # thread_list.append(thread)
  292. #
  293. # for thread in thread_list:
  294. # thread.join()
  295. # db.close()
  296. time = dt.now().strftime('%Y-%m-%d %H:%M:%S')
  297. results_list =','.join(set(results))
  298. print(set(results))
  299. # sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
  300. # cursor_pool.execute(sql)
  301. # db_pool.commit()
  302. print('做多', set(results))
  303. print('做空', set(results_short))
  304. print(len(set(results)))
  305. print(len(set(results_short)))
  306. end= dt.now()
  307. print('总时长:', (end - start).seconds)