qmt_get_macd.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. # coding:utf-8
  2. from datetime import datetime as dt
  3. import os
  4. import pandas as pd
  5. import time
  6. from sqlalchemy import create_engine
  7. from jqdatasdk import *
  8. import pymysql
  9. import multiprocessing as mp
  10. import math
  11. import talib as ta
  12. from xtquant import xtdata
  13. import os
  14. pd.set_option('display.max_columns', None) # 设置显示最大行
  15. engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_whole?charset=utf8')
  16. def err_call_back(err):
  17. print(f'出错啦~ error:{str(err)}')
  18. def myself_kdj(df):
  19. low_list = df['low_back'].rolling(9, min_periods=9).min()
  20. low_list.fillna(value=df['low_back'].expanding().min(), inplace=True)
  21. high_list = df['high_back'].rolling(9, min_periods=9).max()
  22. high_list.fillna(value=df['high_back'].expanding().max(), inplace=True)
  23. rsv = (df['close_back'] - low_list) / (high_list - low_list) * 100
  24. df['k'] = pd.DataFrame(rsv).ewm(com=2).mean()
  25. df['d'] = df['k'].ewm(com=2).mean()
  26. df['j'] = 3 * df['k'] - 2 * df['d']
  27. return df
  28. # macd指标
  29. def get_macd_data(data, short=0, long1=0, mid=0):
  30. if short == 0:
  31. short = 12
  32. if long1 == 0:
  33. long1 = 26
  34. if mid == 0:
  35. mid = 9
  36. data['sema'] = pd.Series(data['close_back']).ewm(span=short).mean()
  37. data['lema'] = pd.Series(data['close_back']).ewm(span=long1).mean()
  38. data.fillna(0, inplace=True)
  39. data['dif'] = data['sema'] - data['lema']
  40. data['dea'] = pd.Series(data['dif']).ewm(span=mid).mean()
  41. data['macd'] = 2 * (data['dif'] - data['dea'])
  42. data.fillna(0, inplace=True)
  43. # return data[['dif', 'dea', 'macd']]
  44. # rsi指标
  45. # 建议用talib库的RSI方法,亲测有用
  46. def get_ris(data):
  47. data["rsi_6"] = ta.RSI(data['close_back'], timeperiod=6)
  48. data["rsi_12"] = ta.RSI(data['close_back'], timeperiod=12)
  49. data["rsi_24"] = ta.RSI(data['close_back'], timeperiod=24)
  50. def get_bias(data):
  51. # 计算方法:
  52. # bias指标
  53. # N期BIAS=(当日收盘价-N期平均收盘价)/N期平均收盘价*100%
  54. data['bias_6'] = (data['close_back'] - data['close_back'].rolling(6, min_periods=1).mean()) / \
  55. data['close_back'].rolling(6, min_periods=1).mean() * 100
  56. data['bias_12'] = (data['close_back'] - data['close_back'].rolling(12, min_periods=1).mean()) / \
  57. data['close_back'].rolling(12, min_periods=1).mean() * 100
  58. data['bias_24'] = (data['close_back'] - data['close_back'].rolling(24, min_periods=1).mean()) / \
  59. data['close_back'].rolling(24, min_periods=1).mean() * 100
  60. data['bias_6'] = round(data['bias_6'], 2)
  61. data['bias_12'] = round(data['bias_12'], 2)
  62. data['bias_24'] = round(data['bias_24'], 2)
  63. def get_wilr(data):
  64. # 威廉指标
  65. # 建议用talib库的WILLR方法,亲测有用
  66. data['willr'] = ta.WILLR(data['high_back'], data['low_back'], data['close_back'], timeperiod=14)
  67. def get_hlfx(data):
  68. Trading_signals = 0
  69. data_temp = data[['time', 'open_back', 'close_back', 'high_back', 'low_back', 'dif', 'dea', 'macd']]
  70. data_temp.columns = ['time', 'open', 'close', 'high', 'low', 'dif', 'dea', 'macd']
  71. df_day = pd.DataFrame(columns=['time', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'])
  72. # 先处理去包含
  73. for i in data_temp.index:
  74. if i == 0 or i == 1:
  75. df_day = pd.concat([df_day, data_temp.iloc[[i]]], ignore_index=True)
  76. # 不包含
  77. elif (df_day.iloc[-1, 3] > data_temp.loc[i, 'high']
  78. and df_day.iloc[-1, 4] > data_temp.loc[i, 'low']) \
  79. or (df_day.iloc[-1, 3] < data_temp.loc[i, 'high']
  80. and df_day.iloc[-1, 4] < data_temp.loc[i, 'low']):
  81. df_day = pd.concat([df_day, data_temp.loc[[i]]], ignore_index=True)
  82. # 包含
  83. else:
  84. # 左高,下降
  85. if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
  86. df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], data_temp.loc[i, 'high'])
  87. df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], data_temp.loc[i, 'low'])
  88. else:
  89. # 右高,上升
  90. df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], data_temp.loc[i, 'high'])
  91. df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], data_temp.loc[i, 'low'])
  92. # print('111', df_day, data_temp)
  93. if len(df_day.index) > 2:
  94. # 寻找顶底分型
  95. for x in range(2, len(df_day.index)):
  96. m = x - 1
  97. # 底
  98. if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and (
  99. df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
  100. df_day.loc[x, 'HL'] = 'L*'
  101. while m:
  102. if df_day.loc[m, 'HL'] in ['H', 'HH', 'H*']:
  103. if (x - m) > 3:
  104. # 成笔——>L
  105. df_day.loc[x, 'HL'] = 'L'
  106. # 产生信号,进入hlfx_pool
  107. if x == len(df_day.index) - 1:
  108. Trading_signals = 1
  109. elif df_day.loc[m, 'HL'] == 'L':
  110. if df_day.loc[m - 1, 'low'] > df_day.loc[x - 1, 'low']:
  111. # 前一个为底更高,且中间不存在更低的底
  112. df_day.loc[x, 'HL'] = 'L'
  113. # 产生信号,进入hlfx_pool
  114. if x == len(df_day.index) - 1:
  115. Trading_signals = 1
  116. # 获得MACD,判断MACD判断背驰
  117. x_macd_dif, x_macd_dea, x_macd_macd = data_temp.loc[x, 'dif'], data_temp.loc[x, 'dea'], data_temp.loc[x, 'macd']
  118. m_macd_dif, m_macd_dea, m_macd_macd = data_temp.loc[m, 'dif'], data_temp.loc[m, 'dea'], data_temp.loc[m, 'macd']
  119. # MACD底背驰
  120. if m_macd_dif < x_macd_dif:
  121. # 背驰底->LL
  122. df_day.loc[x, 'HL'] = 'LL'
  123. break
  124. break
  125. m = m - 1
  126. if m == 0:
  127. df_day.loc[x, 'HL'] = 'L'
  128. # 顶
  129. elif ((df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
  130. df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high'])):
  131. df_day.loc[x, 'HL'] = 'H*'
  132. while m:
  133. if df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']:
  134. if x - m > 3:
  135. # 成笔->H
  136. df_day.loc[x, 'HL'] = 'H'
  137. # 产生信号,进入hlfx_pool
  138. if x == len(df_day.index) - 1:
  139. Trading_signals = 2
  140. elif (df_day.loc[m, 'HL'] == 'H'):
  141. if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
  142. # 前一个为顶,且中间存在不包含 or 更高的顶
  143. df_day.loc[x, 'HL'] = 'H'
  144. # 产生信号,进入hlfx_pool
  145. if x == len(df_day.index) - 1:
  146. Trading_signals = 2
  147. # 获得MACD,判断MACD判断背驰
  148. x_macd_dif, x_macd_dea, x_macd_macd = data_temp.loc[x, 'dif'], data_temp.loc[x, 'dea'], data_temp.loc[x, 'macd']
  149. m_macd_dif, m_macd_dea, m_macd_macd = data_temp.loc[m, 'dif'], data_temp.loc[m, 'dea'], data_temp.loc[m, 'macd']
  150. # MACD顶背驰
  151. if x_macd_dif < m_macd_dif:
  152. df_day.loc[x, 'HL'] = 'HH'
  153. break
  154. break
  155. m = m - 1
  156. if m == 0:
  157. df_day.loc[x, 'HL'] = 'H'
  158. else:
  159. df_day.loc[x, 'HL'] = '-'
  160. df_temp = df_day[['time', 'HL']]
  161. return df_temp, Trading_signals
  162. def tech_anal(stocks, hlfx_pool):
  163. engine_tech = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
  164. m = 0
  165. print(f'{dt.now()}开始循环计算! MyPid is {os.getpid()}')
  166. for stock in stocks:
  167. try:
  168. df = pd.read_sql_table('%s_1d' % stock, con=engine)
  169. except BaseException:
  170. print(stock)
  171. pass
  172. else:
  173. get_macd_data(df)
  174. get_ris(df)
  175. get_bias(df)
  176. get_wilr(df)
  177. df_temp, T_signals = get_hlfx(df)
  178. df = pd.merge(df, df_temp, on='time', how='left')
  179. df['HL'].fillna(value='-', inplace=True)
  180. df = df.reset_index(drop=True)
  181. if stock in hlfx_pool and T_signals == 2:
  182. hlfx_pool.remove(stock)
  183. elif stock not in hlfx_pool and T_signals == 1:
  184. hlfx_pool.append(stock)
  185. try:
  186. df.to_sql('%s_1d' % stock, con=engine_tech, index=False, if_exists='replace')
  187. # with engine.connect() as con:
  188. # con.execute("ALTER TABLE `%s_1d` ADD PRIMARY KEY (`time`);" % stock)
  189. except BaseException:
  190. print(stock)
  191. pass
  192. else:
  193. print(f"{stock} 成功!")
  194. m += 1
  195. print(f'Pid:{os.getpid()}已经完工了,应处理{len(stocks)},共计算{m}支个股')
  196. if __name__ == '__main__':
  197. sttime = dt.now()
  198. stocks = xtdata.get_stock_list_in_sector('沪深A股')
  199. print(len(stocks))
  200. fre = '1d'
  201. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8')
  202. hlfx_pool = mp.Manager().list()
  203. hlfx_pool.extend(pd.read_sql_query(
  204. 'select value from `%s`' % fre, engine_hlfx_pool).iloc[-1, 0].split(","))
  205. pool = mp.Pool(processes=mp.cpu_count())
  206. step = math.ceil(len(stocks) / mp.cpu_count())
  207. # step = 10000
  208. for i in range(0, len(stocks), step):
  209. pool.apply_async(func=tech_anal, args=(stocks[i:i + step], hlfx_pool,), error_callback=err_call_back)
  210. pool.close()
  211. pool.join()
  212. print(hlfx_pool)
  213. # 存档入库
  214. db_pool = pymysql.connect(host='localhost',
  215. user='root',
  216. port=3307,
  217. password='r6kEwqWU9!v3',
  218. database='hlfx_pool')
  219. cursor_pool = db_pool.cursor()
  220. results_list = ','.join(set(hlfx_pool))
  221. sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
  222. cursor_pool.execute(sql)
  223. db_pool.commit()
  224. edtime = dt.now()
  225. print(edtime - sttime)