qbh.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. from jqdatasdk import *
  2. auth('18019403367', 'Qwer4321')
  3. import pandas as pd
  4. import pymysql
  5. from sqlalchemy import create_engine
  6. import threading
  7. # 连接数据库
  8. # db_stk_sql = pymysql.connect(host='localhost',
  9. # user='root',
  10. # port=3307,
  11. # password='r6kEwqWU9!v3',
  12. # database='stocks',
  13. # connect_timeout=600)
  14. #
  15. #
  16. # db_qbh = pymysql.connect(host='localhost',
  17. # user='root',
  18. # port=3307,
  19. # password='r6kEwqWU9!v3',
  20. # database='qbh',
  21. # charset='utf8')
  22. #
  23. #
  24. # cursor = db_qbh.cursor()
  25. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
  26. engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
  27. stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
  28. # stocks =stocks[0:40]
  29. thd = threading.local()
  30. def qbh(stocks, engine, engine_backup):
  31. for stock in stocks:
  32. thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  33. # print(new_df.head())
  34. thd.df_day = stk['stk' + stock[:6]]
  35. for i in thd.df_day.index:
  36. if i == 0 or i == 1:
  37. thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
  38. # 不包含
  39. elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
  40. and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
  41. or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
  42. and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
  43. thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
  44. # 包含
  45. else:
  46. # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
  47. # 左高,下降
  48. if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
  49. thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
  50. thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
  51. else:
  52. # 右高,上升
  53. thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
  54. thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
  55. thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine, index=True, if_exists='replace')
  56. with engine.connect() as con:
  57. con.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
  58. thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
  59. with engine_backup.connect() as con_backup:
  60. con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
  61. # thd.new_df.to_csv(
  62. # '/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220211qbh/qbh%s.csv' % stock[:6])
  63. # print(stock)
  64. # print("**************")
  65. #
  66. # # new_df.to_csv('new_df.csv')
  67. #
  68. # #return new_df
  69. stk = locals()
  70. engine = []
  71. engine_backup = []
  72. u = '1d'
  73. # 获取数据存入DataFrame
  74. for stock in stocks:
  75. stk['stk'+stock[:6]] = pd.read_sql_query('select date,open,close,high,low,volume,money from stk%s_%s' % (stock[:6], u), engine2)
  76. # print(stock, stk['stk'+stock[:6]])
  77. print("###############################################################################################################"
  78. "###############################################################################################################"
  79. "###############################################################################################################"
  80. "###############################################################################################################"
  81. "###############################################################################################################"
  82. "###############################################################################################################"
  83. "###############################################################################################################")
  84. # 开始去包含
  85. # qbh(stocks)
  86. step = 100
  87. for m in range(0, len(stocks), step):
  88. engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8', pool_recycle= 3600))
  89. engine_backup.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8', pool_recycle= 3600))
  90. threading.Thread(target=qbh, args=(stocks[m:m + step], engine[m], engine_backup[m])).start()