123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- import numpy as np
- from sqlalchemy import create_engine
- import pandas as pd
- import pymysql
- import backtrader as bt
- import backtrader.indicators as btind
- import datetime
- import math
- import threading
- from datetime import datetime as dt
- import multiprocessing as mp
- from multiprocessing import Manager
- from backtrader.feeds import PandasData
- import os
- # import multiprocessing
- import matplotlib
- class MyPandasData(PandasData):
- lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
- , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
- params = (('change_pct', 7),
- ('net_amount_main', 8),
- ('net_pct_main', 9),
- ('net_amount_xl', 10),
- ('net_pct_xl', 11),
- ('net_amount_l', 12),
- ('net_pct_l', 13),
- ('net_amount_m', 14),
- ('net_pct_m', 15),
- ('net_amount_s', 16),
- ('net_pct_s', 17),
- )
- class TestStrategy(bt.Strategy):
- params = (
- ("num", 3),
- ('Volatility', 0),
- ('rate', 5),# 注意要有逗号!!
- )
- def log(self, txt, dt=None):
- ''' Logging function for this strategy'''
- dt = dt or self.datas[0].datetime.date(0)
- # print('%s, %s' % (dt.isoformat(), txt))
- def __init__(self):
- # self.num = num
- # self.Volatility = Volatility/100
- # Keep a reference to the "close" line in the data[0] dataseries
- self.dataclose = self.datas[0].close
- self.dataopen = self.datas[0].open
- self.high = self.datas[0].high
- self.low = self.datas[0].low
- self.volume = self.datas[0].volume
- self.change_pct = self.datas[0].change_pct
- self.net_amount_main = self.datas[0].net_amount_main
- self.net_pct_main = self.datas[0].net_pct_main
- self.net_amount_xl = self.datas[0].net_amount_xl
- self.net_pct_xl = self.datas[0].net_pct_xl
- self.net_amount_l = self.datas[0].net_amount_l
- self.net_pct_l = self.datas[0].net_pct_l
- self.sma5 = btind.MovingAverageSimple(self.datas[0].close, period=5)
- self.sma10 = btind.MovingAverageSimple(self.datas[0].close, period=10)
- self.sma20 = btind.MovingAverageSimple(self.datas[0].close, period=20)
- def notify_order(self, order):
- """
- 订单状态处理
- Arguments:
- order {object} -- 订单状态
- """
- if order.status in [order.Submitted, order.Accepted]:
- # 如订单已被处理,则不用做任何事情
- return
- # 检查订单是否完成
- if order.status in [order.Completed]:
- if order.isbuy():
- self.buyprice = order.executed.price
- self.buycomm = order.executed.comm
- self.bar_executed = len(self)
- # 订单因为缺少资金之类的原因被拒绝执行
- elif order.status in [order.Canceled, order.Margin, order.Rejected]:
- pass
- # self.log('Order Canceled/Margin/Rejected')
- # 订单状态处理完成,设为空
- self.order = None
- def notify_trade(self, trade):
- """
- 交易成果
- Arguments:
- trade {object} -- 交易状态
- """
- if not trade.isclosed:
- return
- # 显示交易的毛利率和净利润
- # self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
- def next(self):
- # print(self.num,self.Volatility)
- # Simply log the closing price of the series from the reference
- # self.sma20[-2] < self.sma20[-1] < self.sma20[0] and self.sma10[-2] < self.sma10[-1] < self.sma10[0]
- # and (self.sma5[-1] < self.sma10[-1])
- # and (self.net_pct_l[0] > 10) and (self.net_pct_xl[0] > 3) \
- # and (self.net_amount_main[-1] > 0) and (self.net_amount_main[0] > 0)
- if len(self) > self.params.num:
- lowest = np.min(self.low.get(size=self.params.num))
- vola = self.params.Volatility/100
- rate = self.params.rate/100
- # print(f'{self.params.num}日天最低值:{lowest},波动率为{self.params.Volatility/100}')
- if (self.dataclose[0] > self.dataopen[0]) and ((lowest*(1-vola)) < self.low[0] < (lowest*(1+vola)))\
- and (self.dataclose[0] > self.sma5[0]) and self.sma5[0] > self.sma5[-1] \
- and (not self.position) and (self.sma5[0] > self.sma10[0]) \
- and (self.net_pct_main[-2] > 5) \
- and (self.change_pct[0] > 5):
- # self.log('BUY CREATE, %.2f' % self.dataclose[0])
- self.order = self.buy()
- elif self.dataclose < self.sma5[0] or self.sma5[0] < self.sma10[0]\
- or (self.dataclose[0] > (self.sma5[0] * (1+rate))):
- self.order = self.close()
- # self.log('Close, %.2f' % self.dataclose[0])
- def stop(self):
- # pass
- self.log(u'(MA趋势交易效果) Ending Value %.2f' % (self.broker.getvalue()))
- def backtrader(table_list, num, Volatility, rate, ns):
- stattime = dt.now()
- # print(type(ns.df), ns.df)
- engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks_data?charset=utf8')
- result = mp.Manager().list()
- result_change = mp.Manager().list()
- result_change_fall = mp.Manager().list()
- err_list = mp.Manager().list()
- for stock in table_list:
- # print(stock)
- stk_df = pd.read_sql_table(stock, engine)
- stk_df.date = pd.to_datetime(stk_df.date)
- if len(stk_df) > 60:
- cerebro = bt.Cerebro()
- cerebro.addstrategy(TestStrategy, num=num, Volatility=Volatility, rate=rate)
- cerebro.addsizer(bt.sizers.FixedSize, stake=10000)
- data = MyPandasData(dataname=stk_df,
- fromdate=datetime.datetime(2010,1,1),
- todate=datetime.datetime(2022, 10, 30),
- datetime='date',
- open='open',
- close='close',
- high='high',
- low='low',
- volume='volume',
- change_pct='change_pct',
- net_amount_main='net_amount_main',
- net_pct_main='net_pct_main',
- net_amount_xl='net_amount_xl',
- net_pct_xl='net_pct_xl',
- net_amount_l='net_amount_l',
- net_pct_l='net_pct_l',
- net_amount_m='net_amount_m',
- net_pct_m='net_pct_m',
- net_amount_s='net_amount_s',
- net_pct_s='net_pct_s',
- )
- # print('取值完成')
- cerebro.adddata(data, name=stock)
- cerebro.broker.setcash(100000.0)
- cerebro.broker.setcommission(0.005)
- cerebro.addanalyzer(bt.analyzers.PyFolio)
- # 策略执行前的资金
- # print('启动资金: %.2f' % cerebro.broker.getvalue())
- try:
- # 策略执行
- cerebro.run()
- except IndexError:
- err_list.append(stock)
- else:
- if cerebro.broker.getvalue() > 100000.0:
- # print('recode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
- result_change.append((cerebro.broker.getvalue()/10000-1))
- result.append(stock)
- else:
- result_change_fall.append((1-cerebro.broker.getvalue() / 10000))
- # print('aaaaaaaaaaa')
- print(f'以{num}内最低值波动{Volatility}为支撑、{rate}%为乖离率,结果状态为:')
- print('正盈利的个股为:', len(result_change), '成功率为:', len(result)/len(table_list))
- print(f'总盈利:{np.sum(result_change)} 平均盈利:{np.mean(result_change)},最大盈利:{np.max(result_change)}, 最小盈利:{np.min(result_change)}')
- print(
- f'总亏损:{np.sum(result_change_fall)},平均亏损:{np.mean(result_change_fall)},最大亏损:{np.min(result_change_fall)} 最小亏损:{np.max(result_change_fall)}')
- endtime = dt.now()
- # ns.df.loc[len(ns.df)] = [num, Volatility, rate, len(result), len(result)/len(table_list), np.sum(result_change),
- # np.mean(result_change), np.max(result_change), np.min(result_change),
- # np.sum(result_change_fall), np.mean(result_change_fall),
- # np.min(result_change_fall), np.max(result_change_fall)]
- a = pd.DataFrame(data=[[num, Volatility, rate, len(result), len(result)/len(table_list), np.sum(result_change),
- np.mean(result_change), np.max(result_change), np.min(result_change),
- np.sum(result_change_fall), np.mean(result_change_fall),
- np.min(result_change_fall), np.max(result_change_fall)]],
- columns=['周期', '波动率', '乖离率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
- '平均亏损', '最大亏损', '最小亏损'])
- ns.df = pd.concat([ns.df, a], ignore_index=True)
- # ns.df = ns.df.append(a)
- print(ns.df)
- print('每轮耗时:', endtime-stattime)
- # cerebro.plot()
- if __name__ == '__main__':
- # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8', poolclass=NullPool)
- # stocks = pd.read_sql_query(
- # 'select value from MA5_1d', engine_hlfx)
- cpu_count = os.cpu_count()
- os_name = os.name
- if os_name == 'posix':
- path = '/Users/daniel/Documents/'
- else:
- path = 'D:\\BackTrader\\'
- fre = '1d'
- db = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='stocks_data')
- cursor = db.cursor()
- cursor.execute("show tables like '%%%s%%' " % fre)
- table_list = [tuple[0] for tuple in cursor.fetchall()]
- # print(table_list)
- # table_list = table_list[0:100]
- mgr = Manager()
- ns = mgr.Namespace()
- df = pd.DataFrame(columns=['周期', '波动率', '乖离率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
- '平均亏损', '最大亏损', '最小亏损'])
- ns.df = df
- sttime = dt.now()
- thread_list = []
- for num in range(30, 120, 10):
- for Volatility in range(3, 21, 1):
- for rate in range(5, 15, 1):
- #获得cpu数量,计算进程数
- # step = math.ceil(len(table_list)/cpu_count/100)*100
- print(f'{num}天波动率为{Volatility}% 乖离率为{rate}%')
- # for i in range(0, len(table_list), step):
- # thd = threading.local()
- # print(i)
- p = mp.Process(target=backtrader, args=(table_list, num, Volatility, rate, ns))
- # p.start()
- thread_list.append(p)
- # p.start()
- # p.join()
- print(len(thread_list))
- print('开始轮循!')
- for thread in thread_list:
- thread.start()
- for thread in thread_list:
- thread.join()
- print('NS.DF:', '\n', ns.df)
- edtime = dt.now()
- print('总耗时:', edtime - sttime)
- ns.df.to_csv(path+dt.now().strftime('%Y-%m-%d')+'.csv', index=True,encoding='utf_8_sig')
|