123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from jqdatasdk import *
- auth('18019403367', 'Qwer4321')
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import threading
- from datetime import datetime as dt
- starttime = dt.now()
- engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- stocks = list(get_all_securities(['stock'], date='2021-12-31').index)
- thd = threading.local()
- def qbh(stocks, engine, engine_backup):
- for stock in stocks:
- thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
-
- thd.df_day = stk['stk' + stock[:6]]
- for i in thd.df_day.index:
- if i == 0 or i == 1:
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
-
- elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
- and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
- or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
- and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
-
- else:
-
-
- if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
- thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
- thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
- else:
-
- thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
- thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
-
-
-
- thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
- with engine_backup.connect() as con_backup:
- con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
-
-
- print(stock)
- print("**************")
-
-
-
-
- stk = locals()
- engine = []
- engine_backup = []
- u = '1d'
- for stock in stocks:
- stk['stk'+stock[:6]] = pd.read_sql_query('select date,open,close,high,low,volume,money from stk%s_%s' % (stock[:6], u), engine2)
-
- print("###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################")
- thread_list = []
- step = 1000
- times_engine = 0
- for m in range(0, len(stocks), step):
- engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8', pool_recycle= 3600))
- engine_backup.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8', pool_recycle= 3600))
- thread = threading.Thread(target=qbh, args=(stocks[m:m + step], engine[times_engine], engine_backup[times_engine]))
- times_engine =times_engine + 1
- thread.start()
- thread_list.append(thread)
- for thread in thread_list:
- thread.join()
- endtime = dt.now()
- print((endtime-starttime).seconds)
|