qmt_real_hlfx.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. # coding:utf-8
  2. # from jqdatasdk import *
  3. import pandas as pd
  4. import pymysql
  5. from sqlalchemy import create_engine, text
  6. import threading
  7. from datetime import datetime as dt
  8. import datetime
  9. from jqdatasdk.technical_analysis import *
  10. from xtquant import xtdata, xtconstant
  11. from xtquant.xttype import StockAccount
  12. from xtquant.xttrader import XtQuantTrader, XtQuantTraderCallback
  13. import time
  14. import math
  15. import multiprocessing as mp
  16. import os
  17. import psutil
  18. import traceback
  19. from apscheduler.schedulers.blocking import BlockingScheduler
  20. import sys
  21. import gc
  22. # 原始版本
  23. # auth('18616891214', 'Ea?*7f68nD.dafcW34d!')
  24. # auth('18521506014', 'Abc123!@#')
  25. # stocks = list(get_all_securities(['stock'], date=dt.today().strftime('%Y-%m-%d')).index)
  26. # stocks = stocks[0:200]
  27. pd.set_option('display.max_columns', None) # 设置显示最大行
  28. fre = '1d'
  29. class MyXtQuantTraderCallback(XtQuantTraderCallback):
  30. def on_disconnected(self):
  31. """
  32. 连接断开
  33. :return:
  34. """
  35. print(datetime.datetime.now(), '连接断开回调')
  36. def on_stock_order(self, order):
  37. """
  38. 委托回报推送
  39. :param order: XtOrder对象
  40. :return:
  41. """
  42. print(datetime.datetime.now(), '委托回调', order.order_remark)
  43. def on_stock_trade(self, trade):
  44. """
  45. 成交变动推送
  46. :param trade: XtTrade对象
  47. :return:
  48. """
  49. print(datetime.datetime.now(), '成交回调', trade.order_remark)
  50. def on_order_error(self, order_error):
  51. """
  52. 委托失败推送
  53. :param order_error:XtOrderError 对象
  54. :return:
  55. """
  56. # print("on order_error callback")
  57. # print(order_error.order_id, order_error.error_id, order_error.error_msg)
  58. print(f"委托报错回调 {order_error.order_remark} {order_error.error_msg}")
  59. def on_cancel_error(self, cancel_error):
  60. """
  61. 撤单失败推送
  62. :param cancel_error: XtCancelError 对象
  63. :return:
  64. """
  65. print(datetime.datetime.now(), sys._getframe().f_code.co_name)
  66. def on_order_stock_async_response(self, response):
  67. """
  68. 异步下单回报推送
  69. :param response: XtOrderResponse 对象
  70. :return:
  71. """
  72. print(f"异步委托回调 {response.order_remark}")
  73. def on_cancel_order_stock_async_response(self, response):
  74. """
  75. :param response: XtCancelOrderResponse 对象
  76. :return:
  77. """
  78. print(datetime.datetime.now(), sys._getframe().f_code.co_name)
  79. def on_account_status(self, status):
  80. """
  81. :param response: XtAccountStatus 对象
  82. :return:
  83. """
  84. print(datetime.datetime.now(), sys._getframe().f_code.co_name)
  85. def err_call_back(err):
  86. print(f'问题在这里~ error:{str(err)}')
  87. traceback.print_exc()
  88. def run(seq):
  89. mor = datetime.datetime.strptime(
  90. str(dt.now().date()) + '11:30', '%Y-%m-%d%H:%M')
  91. afternoon = datetime.datetime.strptime(
  92. str(dt.now().date()) + '15:00', '%Y-%m-%d%H:%M')
  93. mor_1 = datetime.datetime.strptime(
  94. str(dt.now().date()) + '11:10', '%Y-%m-%d%H:%M')
  95. """阻塞线程接收行情回调"""
  96. import time
  97. client = xtdata.get_client()
  98. while True:
  99. now_date = dt.now()
  100. if not client.is_connected():
  101. xtdata.unsubscribe_quote(seq)
  102. raise Exception('行情服务连接断开')
  103. # if mor < dt.now() < mor_1:
  104. # xtdata.unsubscribe_quote(seq)
  105. # print(f'现在时间:{dt.now()},已休市')
  106. # sys.exit()
  107. # break
  108. # return 0
  109. elif dt.now() > afternoon:
  110. xtdata.unsubscribe_quote(seq)
  111. print(f'现在时间:{dt.now()},已收盘')
  112. sys.exit()
  113. break
  114. return
  115. def hlfx(stock_list, data):
  116. # stock_list = list(data.keys())
  117. # print(f'def-->hlfx, MyPid is {os.getpid()}, 本次我需要计算{len(stock_list)},now is {dt.now()}')
  118. # 获得hlfx_pool池子
  119. engine_hlfx_pool = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx_pool?charset=utf8',
  120. pool_size=100, pool_recycle=60, max_overflow=50, pool_timeout=60)
  121. results = []
  122. results.extend(pd.read_sql_query(text(
  123. 'select value from `%s` order by `index` desc limit 10' % fre), engine_hlfx_pool.connect()).iloc[0, 0].split(","))
  124. # print(f'本次hlfx_pool有{len(results)}个个股')
  125. engine_stock = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8',
  126. pool_size=100, pool_recycle=60, max_overflow=50, pool_timeout=60)
  127. for qmt_stock in stock_list:
  128. # 读取qmt_stocks_whole表-前复权-信息
  129. try:
  130. df_day = pd.read_sql_query(text(
  131. 'select time, open_front, close_front, high_front, low_front, volume_front, amount_front, '
  132. 'dif, dea, macd, HL from `%s_%s`' % (qmt_stock, fre)), engine_stock.connect())
  133. df_day.columns = ['time', 'open', 'close', 'high', 'low', 'volume', 'amount', 'dif', 'dea', 'macd', 'HL']
  134. except BaseException as e:
  135. print(qmt_stock, '未能读取!')
  136. pass
  137. else:
  138. # 获得最新价格信息
  139. get_price = data[qmt_stock]
  140. # print(get_price)
  141. # 调整time时间格式
  142. get_price['time'] = dt.fromtimestamp(get_price['time'] / 1000.0)
  143. # print('成功判定', get_price['time'])
  144. # 先处理去包含
  145. # 不包含
  146. if (df_day.iloc[-1, 3] > get_price['high']
  147. and df_day.iloc[-1, 4] > get_price['low']) \
  148. or (df_day.iloc[-1, 3] < get_price['high']
  149. and df_day.iloc[-1, 4] < get_price['low']):
  150. # print('lalallala', get_price['open'], get_price['lastPrice'], get_price['high'],
  151. # get_price['low'], get_price['volume'], get_price['amount'])
  152. qmt_df = pd.DataFrame(data=[[get_price['time'], get_price['open'], get_price['lastPrice'],
  153. get_price['high'], get_price['low'], get_price['volume'],
  154. get_price['amount']]],
  155. columns=['time', 'open', 'close', 'high', 'low', 'volume', 'amount'])
  156. # print('qmt_______', qmt_df)
  157. df_day = pd.concat([df_day, qmt_df], ignore_index=True)
  158. # print('不包含,合并完成', df_day)
  159. # 包含
  160. else:
  161. if len(df_day) > 2:
  162. # 左高,下降
  163. if df_day.iloc[-2, 3] > df_day.iloc[-1, 3]:
  164. df_day.iloc[-1, 3] = min(df_day.iloc[-1, 3], get_price['high'])
  165. df_day.iloc[-1, 4] = min(df_day.iloc[-1, 4], get_price['low'])
  166. # 右高,上升
  167. else:
  168. df_day.iloc[-1, 3] = max(df_day.iloc[-1, 3], get_price['high'])
  169. df_day.iloc[-1, 4] = max(df_day.iloc[-1, 4], get_price['low'])
  170. # print('包含', df_day)
  171. # 数合并完成,确认df_day
  172. # print(df_day)
  173. # 寻找顶底分型
  174. if len(df_day) > 2:
  175. x = len(df_day.index)-1
  176. m = x - 1
  177. # 底
  178. if ((df_day.loc[x, 'high'] > df_day.loc[x - 1, 'high']) and (
  179. df_day.loc[x - 2, 'high'] > df_day.loc[x - 1, 'high'])):
  180. df_day.loc[x, 'HL'] = 'L*'
  181. # 判断底的性质
  182. while m:
  183. if df_day.loc[m, 'HL'] in ['H', 'HH', 'H*']:
  184. if (x - m) > 3:
  185. # 成笔——>L
  186. df_day.loc[x, 'HL'] = 'L'
  187. break
  188. elif df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']:
  189. if df_day.loc[m - 1, 'low'] > df_day.loc[x - 1, 'low']:
  190. # pool_list.append(qmt_stock)
  191. # 获得MACD,判断MACD判断背驰
  192. x_macd_dif, x_macd_dea, x_macd_macd = df_day.loc[x, 'dif'], df_day.loc[x, 'dea'], \
  193. df_day.loc[x, 'macd']
  194. m_macd_dif, m_macd_dea, m_macd_macd = df_day.loc[m, 'dif'], df_day.loc[m, 'dea'], \
  195. df_day.loc[m, 'macd']
  196. # 背驰底->LL
  197. if m_macd_dif < x_macd_dif:
  198. df_day.loc[x, 'HL'] = 'LL'
  199. # 产生信号,进入hlfx_pool
  200. results.append(qmt_stock)
  201. break
  202. # 前一个为底更高,且中间不存在更低的底
  203. else:
  204. df_day.loc[x, 'HL'] = 'L'
  205. # 产生信号,进入hlfx_pool
  206. break
  207. m = m - 1
  208. if m == 0:
  209. df_day.loc[x, 'HL'] = 'L'
  210. results.append(qmt_stock)
  211. # 顶
  212. elif (df_day.loc[x, 'high'] < df_day.loc[x - 1, 'high']) and (
  213. df_day.loc[x - 2, 'high'] < df_day.loc[x - 1, 'high']) and (qmt_stock in results):
  214. df_day.loc[x, 'HL'] = 'H*'
  215. while m:
  216. if df_day.loc[m, 'HL'] in ['L', 'LL', 'L*']:
  217. if x - m > 3:
  218. # 成笔->H
  219. df_day.loc[x, 'HL'] = 'H'
  220. # 产生卖出信号,进入hlfx_pool
  221. results.remove(qmt_stock)
  222. break
  223. elif df_day.loc[m, 'HL'] in ['H','HH', 'H*']:
  224. if df_day.loc[x - 1, 'high'] > df_day.loc[m - 1, 'high']:
  225. # 获得MACD,判断MACD判断背驰
  226. x_macd_dif, x_macd_dea, x_macd_macd = df_day.loc[x, 'dif'], df_day.loc[x, 'dea'], \
  227. df_day.loc[x, 'macd']
  228. m_macd_dif, m_macd_dea, m_macd_macd = df_day.loc[m, 'dif'], df_day.loc[m, 'dea'], \
  229. df_day.loc[m, 'macd']
  230. # MACD顶背驰
  231. if x_macd_dif < m_macd_dif:
  232. df_day.loc[x, 'HL'] = 'HH'
  233. # 产生卖出信号,进入hlfx_pool
  234. results.remove(qmt_stock)
  235. break
  236. # 前一个为顶,且中间存在不包含 or 更高的顶
  237. else:
  238. df_day.loc[x, 'HL'] = 'H'
  239. # 产生卖出信号,进入hlfx_pool
  240. results.remove(qmt_stock)
  241. break
  242. m = m - 1
  243. if m == 0:
  244. df_day.loc[x, 'HL'] = 'H'
  245. results.remove(qmt_stock)
  246. db_pool = pymysql.connect(host='localhost',
  247. user='root',
  248. port=3307,
  249. password='r6kEwqWU9!v3',
  250. database='hlfx_pool')
  251. cursor_pool = db_pool.cursor()
  252. results_list = ','.join(set(results))
  253. sql = "INSERT INTO %s (date,value) VALUES('%s','%s')" % (fre, dt.now().strftime('%Y-%m-%d %H:%M:%S'), results_list)
  254. cursor_pool.execute(sql)
  255. db_pool.commit()
  256. print(f'{dt.now()} 新的results有{len(set(results))}, \n {set(results)}')
  257. engine_stock.dispose()
  258. engine_hlfx_pool.dispose()
  259. def prepare(data):
  260. print(dt.now())
  261. stock_list = list(data.keys())
  262. if len(data.keys()) >= 12:
  263. cpu_count = 12
  264. else:
  265. cpu_count = len(data.keys())
  266. step = math.ceil(len(stock_list) / cpu_count)
  267. to_hlfx_list = []
  268. for i in range(0, len(stock_list), step):
  269. to_hlfx_list.append([x for x in stock_list[i:i + step]])
  270. pool = mp.Pool(processes=int(cpu_count/2))
  271. for m in range(len(to_hlfx_list)):
  272. pool.apply_async(func=hlfx,
  273. args=(to_hlfx_list[m], data), error_callback=err_call_back)
  274. pool.close()
  275. pool.join()
  276. def bridge():
  277. print(f'bridge is {os.getpid()}, now is {dt.now()},开盘了')
  278. stocks = xtdata.get_stock_list_in_sector('沪深A股')
  279. seq = xtdata.subscribe_whole_quote(stocks, callback=prepare)
  280. run(seq)
  281. def job_func():
  282. print(f"Job started at {dt.now()}")
  283. # 创建子进程
  284. p = mp.Process(target=bridge)
  285. # 启动子进程
  286. p.start()
  287. # 等待子进程结束
  288. p.join()
  289. print(f"Job finished at {dt.now()}")
  290. if __name__ == '__main__':
  291. print(f'总进程pid:{os.getpid()}')
  292. mp.freeze_support()
  293. pus = psutil.Process()
  294. # pus.cpu_affinity([0, 1, 2, 3, 4, 5, 6, 7])
  295. path = r'c:\\qmt\\userdata_mini'
  296. # 生成session id 整数类型 同时运行的策略不能重复
  297. session_id = int(time.time())
  298. xt_trader = XtQuantTrader(path, session_id)
  299. # 创建资金账号为 800068 的证券账号对象
  300. acc = StockAccount('920000207040', 'SECURITY')
  301. # 创建交易回调类对象,并声明接收回调
  302. callback = MyXtQuantTraderCallback()
  303. xt_trader.register_callback(callback)
  304. # 启动交易线程
  305. xt_trader.start()
  306. # 建立交易连接,返回0表示连接成功
  307. connect_result = xt_trader.connect()
  308. print('建立交易连接,返回0表示连接成功', connect_result)
  309. # 对交易回调进行订阅,订阅后可以收到交易主推,返回0表示订阅成功
  310. subscribe_result = xt_trader.subscribe(acc)
  311. print('对交易回调进行订阅,订阅后可以收到交易主推,返回0表示订阅成功', subscribe_result)
  312. job_func()
  313. scheduler = BlockingScheduler()
  314. scheduler.add_job(func=job_func, trigger='cron', day_of_week='0-4', hour='09', minute='25',
  315. timezone="Asia/Shanghai", max_instances=5)
  316. # # scheduler.add_job(func=job_func, trigger='cron', day_of_week='0-4', hour='13', minute='00',
  317. # # timezone="Asia/Shanghai")
  318. try:
  319. scheduler.start()
  320. except (KeyboardInterrupt, SystemExit):
  321. pass