123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- from multiprocessing import freeze_support, Value, Lock
- import backtrader as bt
- from backtrader.feeds import PandasData
- import backtrader.indicators as btind
- from sqlalchemy import create_engine, text
- import pymysql
- from tqdm import tqdm
- import concurrent.futures
- import pandas as pd
- import matplotlib
- import datetime
- from datetime import datetime as dt
- from itertools import product
- import psutil
- import logging
- import multiprocessing as mp
- from itertools import islice
- class MyPandasData(PandasData):
- lines = ('hl', 'dif', 'dea', 'macd', 'rsi_6', 'rsi_12', 'rsi_24',)
- params = (('hl', 7),
- ('dif', 8),
- ('dea', 9),
- ('macd', 10),
- ('rsi_6', 11),
- ('rsi_12', 12),
- ('rsi_24', 13),
- )
- '''
- lines = ('change_pct', 'net_amount_main', 'net_pct_main', 'net_amount_xl', 'net_pct_xl', 'net_amount_l', 'net_pct_l'
- , 'net_amount_m', 'net_pct_m', 'net_amount_s', 'net_pct_s',)
- params = (('change_pct', 7),
- ('net_amount_main', 8),
- ('net_pct_main', 9),
- ('net_amount_xl', 10),
- ('net_pct_xl', 11),
- ('net_amount_l', 12),
- ('net_pct_l', 13),
- ('net_amount_m', 14),
- ('net_pct_m', 15),
- ('net_amount_s', 16),
- ('net_pct_s', 17),
- )
- '''
- class TestStrategy(bt.Strategy):
- def log(self, txt, dt=None):
- # 记录策略的执行日志
- dt = dt or self.datas[0].datetime.date(0)
- # print('%s, %s' % (dt.isoformat(), txt))
- def __init__(self):
- # 保存收盘价的引用
- self.dataclose = self.datas[0].close
- def next(self):
- # 记录收盘价
- self.log('Close, %.2f' % self.dataclose[0])
- # 今天的收盘价 < 昨天收盘价
- if self.dataclose[0] < self.dataclose[-1]:
- # 昨天收盘价 < 前天的收盘价
- if self.dataclose[-1] < self.dataclose[-2]:
- # 买入
- self.log('买入, %.2f' % self.dataclose[0])
- self.buy()
- def t():
- print('tttt')
- def chunked_iterable(iterable, size):
- """将可迭代对象分割为指定大小的块"""
- it = iter(iterable)
- while True:
- chunk = tuple(islice(it, size))
- if not chunk:
- return
- yield chunk
- def query_database(table_name):
- engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qmt_stocks_tech?charset=utf8')
- df = pd.read_sql_table(table_name, engine)
- return df
- def get_stock_data():
- while True:
- try:
- db = pymysql.connect(host='localhost',
- user='root',
- port=3307,
- password='r6kEwqWU9!v3',
- database='qmt_stocks_tech')
- cursor = db.cursor()
- cursor.execute("show tables like '%%%s%%' " % '1d')
- table_list = [tuple[0] for tuple in cursor.fetchall()]
- # table_list = table_list[0: 10]
- cursor.close()
- db.close()
- print(f'开始数据库读取')
- with concurrent.futures.ProcessPoolExecutor(max_workers=24) as executor:
- # 使用executor.map方法实现多进程并行查询数据库,得到每个表的数据,并存储在一个字典中
- data_dict = {table_name: df for table_name, df in
- tqdm(zip(table_list, executor.map(query_database, table_list)))}
- print(f'数据库读取完成')
- break
- except BaseException as e:
- print(f'数据库读取错误{e}')
- continue
- return data_dict
- def backtrader_test(stock_data, stock_name, num, vot, rate):
- cerebro = bt.Cerebro()
- stock_data.time = pd.to_datetime(stock_data.time)
- stock_data['HL'] = stock_data['HL'].map({'L': 1,
- 'LL': 2,
- 'L*': 3,
- 'H': 4,
- 'HH': 5,
- 'H*': 6,
- '-': 7})
- data = MyPandasData(dataname=stock_data,
- fromdate=datetime.datetime(2017, 1, 1),
- todate=datetime.datetime(2022, 10, 30),
- datetime='time',
- open='open_back',
- close='close_back',
- high='high_back',
- low='low_back',
- volume='volume_back',
- hl='HL',
- dif='dif',
- dea='dea',
- macd='macd',
- rsi_6='rsi_6',
- rsi_12='rsi_12',
- rsi_24='rsi_24',
- )
- cerebro.adddata(data)
- cerebro.addstrategy(TestStrategy)
- cerebro.broker.setcash(100000.0)
- cerebro.addsizer(bt.sizers.FixedSize, stake=100)
- cerebro.broker.setcommission(commission=0.001)
- cerebro.run()
- return cerebro.broker.getvalue() - 100000.0
- def bbt(stock_data_dict, num, Volatility, rate):
- # while True:
- # exception_flag = False
- async_results = []
- try:
- # 设置每一轮的任务数
- CHUNK_SIZE = 200 # 您可以根据需要进行调整
- for chunk in tqdm(chunked_iterable(stock_data_dict.items(), CHUNK_SIZE)):
- print(f'chunk:{chunk[0][0]}-{chunk[-1][0]}')
- with mp.Pool(processes=min(CHUNK_SIZE, len(chunk), 24)) as pool: # 使用最小值确保不会超出任务数或超过24核心
- for stock, df_stock in chunk:
- async_result = pool.apply_async(func=backtrader_test, args=(df_stock, stock, num, Volatility, rate))
- async_results.append(async_result)
- pool.close()
- pool.join()
- # with concurrent.futures.ProcessPoolExecutor(max_workers=18) as inner_executor:
- # print(f'开始计算{num},{Volatility},{rate}')
- # # 使用executor.map方法实现多进程并行计算不同参数组合的结果
- # results = [result for result in
- # inner_executor.map(backtrader_test, stock_data_dict.values(), stock_data_dict.keys(),
- # [num] * len(stock_data_dict),
- # [Volatility] * len(stock_data_dict), [rate] * len(stock_data_dict),
- # timeout=1200)]
- # except concurrent.futures.TimeoutError as e:
- # print(f'计算超时{e}')
- # results = []
- # exception_flag = True
- except BaseException as e:
- print(f'计算错误{e}')
- results = True
- outputs = [result.get() for result in async_results]
- print(outputs)
- return outputs
- if __name__ == '__main__':
- logger = mp.log_to_stderr()
- logger.setLevel(logging.DEBUG)
- cpu_list = list(range(24))
- pus = psutil.Process()
- pus.cpu_affinity(cpu_list)
- # 定义需要穷举的参数值
- nums = range(60, 80, 20)
- Volatilitys = range(5, 6, 1)
- rates = range(3, 4, 1)
- # 生成所有参数组合
- all_combinations = list(product(nums, Volatilitys, rates))
- print(f'共需计算{len(all_combinations)}次')
- # 获取数据
- stock_data_dict = get_stock_data()
- results = []
- # 获取stock_data_dict的第1个value,即第1个DataFrame
- # stock_data = next(iter(stock_data_dict.values()))
- # print(stock_data)
- for num, Volatility, rate in tqdm(all_combinations, desc='计算进度'):
- result = bbt(stock_data_dict, num, Volatility, rate)
- results.append(result)
- print(results, len(results), len(results[0]))
- df = pd.DataFrame(
- columns=['周期', '波动率', 'MA5斜率', '盈利个数', '盈利比例', '总盈利', '平均盈利', '最大盈利', '最小盈利', '总亏损',
- '平均亏损', '最大亏损', '最小亏损'])
- for tt in results:
- num_profits = len([r for r in tt if r > 0])
- num_losses = len([r for r in tt if r < 0])
- profit_ratio = num_profits / len(stock_data_dict)
- total_profit = sum([r for r in tt if r > 0])
- avg_profit = total_profit / num_profits if num_profits else 0
- max_profit = max(tt)
- min_profit = min([r for r in tt if r > 0]) if num_profits else 0
- total_loss = sum([r for r in tt if r < 0])
- avg_loss = total_loss / num_losses if num_losses else 0
- max_loss = min(tt)
- min_loss = max([r for r in tt if r < 0]) if num_losses else 0
- # Append the results into the DataFrame
- result_dict = {'周期': num, '波动率': Volatility, 'MA5斜率': rate, '盈利个数': num_profits,
- '盈利比例': profit_ratio, '总盈利': total_profit, '平均盈利': avg_profit,
- '最大盈利': max_profit, '最小盈利': min_profit, '总亏损': total_loss,
- '平均亏损': avg_loss, '最大亏损': max_loss, '最小亏损': min_loss}
- df_t = pd.Series(result_dict)
- print(df_t)
- df = pd.concat([df, df_t.to_frame().T], ignore_index=True)
- print(df)
- exit()
- num = 60
- Volatility = 5
- rate = 3
- i = 0
- st = dt.now()
- while True:
- i += 1
- try:
- results = bbt(stock_data_dict, num, Volatility, rate)
- except BaseException as e:
- print(f'计算错误{e}')
- break
- print(results)
- if results is True:
- print(f'计算错误,重新计算')
- continue
- else:
- print(f'第{i}次计算完成,耗时{dt.now() - st}')
- print(f'计算结果为{len(results)}')
- print(results)
- print(f'全部计算完成,共{len(results)}次')
- exit()
- getvalue = backtrader_test(stock_data)
- if getvalue > 100000:
- print('盈利')
- else:
- print('亏损')
- # 绘制图像
- # cerebro.plot()
|