hlfx.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. import threading
  2. import pymysql
  3. import pandas as pd
  4. from sqlalchemy import create_engine
  5. from datetime import datetime as dt
  6. starttime = dt.now()
  7. # 数据库引擎
  8. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
  9. # 连接数据库
  10. db = pymysql.connect(host='localhost',
  11. user='root',
  12. port=3307,
  13. password='r6kEwqWU9!v3',
  14. database='qbh')
  15. fre = '30m'
  16. cursor = db.cursor()
  17. # cursor.execute("select table_name from information_schema.tables where table_schema='qbh_hlfx_backup' and table_name like {}".format('\'%{}\''.format(fre)))
  18. cursor.execute("show tables like '%%%s%%' "% fre)
  19. table_list = [tuple[0] for tuple in cursor.fetchall()]
  20. # print(table_list)
  21. stk = threading.local()
  22. # 主程序
  23. # 找顶底(hdx lfx)分型
  24. def hlfx(table_list, engine, tosql):
  25. for table in table_list:
  26. # stk.fxdf = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
  27. stk.df_day = pd.read_sql_query('select date,open,close,high,low,volume,money,HL from `%s`' % table, engine)
  28. for i in stk.df_day.index:
  29. m = i - 1
  30. if i <= 3:
  31. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  32. stk.df_day.loc[i, 'HL'] = '-'
  33. # 底
  34. elif ((stk.df_day.loc[i,'high']>stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']>stk.df_day.loc[i-1,'high'])):
  35. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  36. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  37. stk.df_day.loc[i, 'HL'] = 'L*'
  38. while m:
  39. if m == 1:
  40. stk.df_day.loc[i, 'HL'] = 'l'
  41. elif stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h':
  42. if(i-m) > 3:
  43. stk.df_day.loc[i, 'HL'] = 'L'
  44. break
  45. elif (stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l'):
  46. if stk.df_day.loc[i-1, 'low'] < stk.df_day.loc[m-1, 'low']:
  47. # 前一个为顶,且中间存在不包含 or 更低的底
  48. stk.df_day.loc[i, 'HL'] = 'L'
  49. break
  50. else:
  51. break
  52. m = m-1
  53. # 顶
  54. elif ((stk.df_day.loc[i,'high']<stk.df_day.loc[i-1,'high']) and (stk.df_day.loc[i-2,'high']<stk.df_day.loc[i-1,'high'])):
  55. # if ((stk.df_day.loc[i-2, 'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-3,'date'] != stk.fxdf.iloc[-1,0]) and (stk.df_day.loc[i-1,'date'] != stk.fxdf.iloc[-1,0])):
  56. # stk.fxdf = pd.concat([stk.fxdf, stk.df_day.iloc[[i]]], ignore_index=True)
  57. stk.df_day.loc[i, 'HL'] = 'H*'
  58. while m:
  59. if m == 1:
  60. stk.df_day.loc[i, 'HL'] = 'h'
  61. elif stk.df_day.loc[m, 'HL'] == 'L' or stk.df_day.loc[m, 'HL'] == 'l':
  62. if i-m > 3:
  63. stk.df_day.loc[i, 'HL'] = 'H'
  64. stk.df_day.loc[i, 9] = stk.df_day.loc[i, 'close'] - stk.df_day.loc[m, 'close']
  65. break
  66. elif (stk.df_day.loc[m, 'HL'] == 'H' or stk.df_day.loc[m, 'HL'] == 'h'):
  67. if stk.df_day.loc[i-1, 'high'] > stk.df_day.loc[m-1, 'high']:
  68. # 前一个为底,且中间存在不包含 or 更高的顶
  69. stk.df_day.loc[i, 'HL'] = 'H'
  70. break
  71. break
  72. m = m-1
  73. else:
  74. stk.df_day.loc[i, 'HL'] = '-'
  75. # stk.df_day.to_csv('/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220212hlfx2/hlfx%s.csv' % table)
  76. stk.df_day.to_sql('%s' % table, con=tosql, index=True, if_exists='replace')
  77. with tosql.connect() as con_backup:
  78. con_backup.execute('ALTER TABLE `%s` ADD PRIMARY KEY (`date`);' % table)
  79. print(table, '\n', '**********************************')
  80. # table_list = ['stk002237_1d','stk000004_1d']
  81. # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8')
  82. # tosql = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/bb22?charset=utf8')
  83. # hlfx(table_list, engine, tosql)
  84. step = 100
  85. thread_list = []
  86. engine = []
  87. tosql = []
  88. times_engine = 0
  89. for i in range(0, len(table_list), step):
  90. engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh?charset=utf8'))
  91. tosql.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/hlfx?charset=utf8'))
  92. thread = threading.Thread(target=hlfx, args=(table_list[i:i + step], engine[times_engine], tosql[times_engine]))
  93. times_engine = times_engine + 1
  94. thread.start()
  95. thread_list.append(thread)
  96. for thread in thread_list:
  97. thread.join()
  98. endtime = dt.now()
  99. print('总时长:', (endtime - starttime).seconds)