123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- from jqdatasdk import *
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import threading
- from datetime import datetime as dt
- auth('18019403367', 'Qwer4321')
- starttime = dt.now()
- # 连接数据库
- # db_stk_sql = pymysql.connect(host='localhost',
- # user='root',
- # port=3307,
- # password='r6kEwqWU9!v3',
- # database='stocks',
- # connect_timeout=600)
- #
- #
- # db_qbh = pymysql.connect(host='localhost',
- # user='root',
- # port=3307,
- # password='r6kEwqWU9!v3',
- # database='qbh',
- # charset='utf8')
- #
- #
- # cursor = db_qbh.cursor()
- # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx?charset=utf8')
- engine2 = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/stocks?charset=utf8')
- stocks = list(get_all_securities(['stock'], date='2022-02-01').index)
- # stocks =stocks[0:70]
- thd = threading.local()
- # def qbh(stocks, engine, engine_backup):
- fre = '30m'
- stk = locals()
- # 获取数据存入DataFrame
- for stock in stocks:
- stk['stk'+stock] = pd.read_sql_query('select date,open,close,high,low,volume,money from `stk%s_%s`'
- % (stock, fre), engine2)
- # print(stock, stk['stk'+stock[:6]])
- print("###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################"
- "###############################################################################################################")
- # engine = create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh?charset=utf8')
- def qbh(stocks, engine, engine_backup):
- for stock in stocks:
- thd.new_df = pd.DataFrame(columns=('date', 'open', 'close', 'high', 'low', 'volume', 'money', 'HL'))
- # print(new_df.head())
- thd.df_day = stk['stk' + stock]
- for i in thd.df_day.index:
- if i == 0 or i == 1:
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
- # 不包含
- elif (thd.new_df.iloc[-1, 3] > thd.df_day.loc[i, 'high']
- and thd.new_df.iloc[-1, 4] > thd.df_day.loc[i, 'low']) \
- or (thd.new_df.iloc[-1, 3] < thd.df_day.loc[i, 'high']
- and thd.new_df.iloc[-1, 4] < thd.df_day.loc[i, 'low']):
- thd.new_df = pd.concat([thd.new_df, thd.df_day.iloc[[i]]], ignore_index=True)
- # 包含
- else:
- # (new_df.iloc[-1,3]>=df_day.loc[i,'high'] and new_df.iloc[-1,4]<= df_day.loc[i,'low']):
- # 左高,下降
- if thd.new_df.iloc[-2, 3] > thd.new_df.iloc[-1, 3]:
- thd.new_df.iloc[-1, 3] = min(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
- thd.new_df.iloc[-1, 4] = min(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
- else:
- # 右高,上升
- thd.new_df.iloc[-1, 3] = max(thd.new_df.iloc[-1, 3], thd.df_day.loc[i, 'high'])
- thd.new_df.iloc[-1, 4] = max(thd.new_df.iloc[-1, 4], thd.df_day.loc[i, 'low'])
- thd.new_df.to_sql('stk%s_%s' % (stock, fre), con=engine, index=True, if_exists='append')
- with engine.connect() as con:
- con.execute('ALTER TABLE `stk%s_%s` ADD PRIMARY KEY (`date`);' % (stock, fre))
- # thd.new_df.to_sql('stk%s_%s' % (stock[:6], u), con=engine_backup, index=True, if_exists='replace')
- # with engine_backup.connect() as con_backup:
- # con_backup.execute('ALTER TABLE stk%s_%s ADD PRIMARY KEY (`date`);' % (stock[:6], u))
- # thd.new_df.to_csv(
- # '/Users/daniel/Library/CloudStorage/OneDrive-个人/个人/python_stocks/20220211qbh/qbh%s.csv' % stock[:6])
- print(stock)
- print("**************")
- #
- # # new_df.to_csv('new_df.csv')
- #
- # #return new_df
- engine = []
- engine_backup = []
- #
- #
- #
- # 开始去包含
- # qbh(stocks)
- thread_list = []
- step = 100
- times_engine = 0
- for m in range(0, len(stocks), step):
- engine.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh?charset=utf8'))
- engine_backup.append(create_engine('mysql+pymysql://root:r6kEwqWU9!v3@localhost:3307/qbh_hlfx_backup?charset=utf8'))
- thread = threading.Thread(target=qbh, args=(stocks[m:m + step], engine[times_engine], engine_backup[times_engine]))
- times_engine =times_engine + 1
- thread.start()
- thread_list.append(thread)
- for thread in thread_list:
- thread.join()
- #
- endtime = dt.now()
- print((endtime-starttime).seconds)
|