qmt_get_market_data.py 1.3 KB

1234567891011121314151617181920212223242526272829303132333435
  1. # coding=utf-8
  2. from xtquant import xtdata
  3. from datetime import datetime as dt
  4. import pandas as pd
  5. from sqlalchemy import create_engine
  6. path = 'c:\\qmt\\userdata_mini'
  7. if __name__ == '__main__':
  8. fre = '1d'
  9. stocks = xtdata.get_stock_list_in_sector('沪深A股')
  10. print(stocks, '\n')
  11. stocks.sort()
  12. # df_data = xtdata.get_local_data(field_list=[], stock_code=stocks, start_time='', end_time='',
  13. # period='1d', count=-1)
  14. # print(df_data)
  15. for s in stocks[0:4]:
  16. print(s)
  17. cq = xtdata.get_divid_factors(s, start_time='19910101', end_time='20130115')
  18. print(cq)
  19. df_data = xtdata.get_local_data(field_list=[], stock_code=[s], start_time='', end_time='',
  20. period='1d', count=-1, dividend_type='back')
  21. df = pd.concat([df_data[i].T for i in ['time', 'open', 'high', 'low', 'close', 'volume', 'amount']], axis=1)
  22. df.columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'amount']
  23. df['time'] = df['time'].apply(lambda x: dt.fromtimestamp(x / 1000.0))
  24. # print(df)
  25. df['time'] = pd.to_datetime(df['time'], unit='ms')
  26. df['time'] = pd.to_datetime(df['time'], format='%Y-%m-%d')
  27. df.reset_index(drop=True, inplace=True)
  28. # df['time'] = df['time'] + timedelta(hours=8)
  29. print(df)